

Oracle® Banking Platform
Extensibility Guide

Release 2.3.0.0.0

E56276-01

July 2014

Oracle Banking Platform Extensibility Guide, Release 2.3.0.0.0

E56276-01

Copyright © 2011, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on content, products
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xix

Audience... xix
Documentation Accessibility ... xix
Related Documents ... xix
Conventions ... xx

1 Objective and Scope

1.1 Overview.. 1-1
1.2 Objective and Scope.. 1-1
1.2.1 Extensibility Objective .. 1-1
1.2.2 Document Scope .. 1-2
1.3 Complementary Documentation .. 1-3
1.4 Out of Scope... 1-3

2 Overview of Use Cases

2.1 Extensibility Use Cases .. 2-1
2.1.1 Extending Service Execution.. 2-1
2.1.2 OBP Application Adapters... 2-2
2.1.3 User Defined Fields ... 2-3
2.1.4 ADF Screen Customization .. 2-4
2.1.5 SOA Customization... 2-5
2.1.6 Batch Framework Extension .. 2-6
2.1.7 Uploaded File Processing ... 2-6
2.1.8 Alert Extension... 2-7
2.1.9 New Reports Creation... 2-8
2.1.10 Security Customization... 2-9
2.1.11 Loan Schedule Computation Algorithm ... 2-11
2.1.12 Print Receipt Functionality.. 2-11
2.1.13 Facts and Business Rules ... 2-12
2.1.14 Composite Application Service .. 2-12
2.1.15 ID Generation .. 2-13
2.1.16 OCH Integration ... 2-13

3 Extending Service Executions

3.1 Service Extension – Extending the “app” Layer... 3-1

iv

3.1.1 Application Service Extension Interface... 3-3
3.1.2 Default Application Service Extension... 3-3
3.1.3 Application Service Extension Executor .. 3-4
3.1.4 Extension Configuration... 3-6
3.2 Extended Application Service Extension – Extending the “appx” Layer........................... 3-7
3.2.1 Extended Application Service Extension Interface... 3-8
3.2.2 Default Implementation of Appx Extension.. 3-9
3.2.3 Configuration .. 3-10
3.2.4 Extended Application Service Extension Executor.. 3-11
3.3 End-to-End Example of an Extension ... 3-13

4 OBP Proxy Extension

5 OBP Application Adapters

5.1 Adapter Implementation Architecture .. 5-1
5.1.1 Package Diagram ... 5-1
5.1.2 Adapter Mechanism Class Diagram ... 5-3
5.1.3 Adapter Mechanism Sequence Diagram.. 5-3
5.2 Examples of Adapter Implementation... 5-4
5.2.1 Example 1 – EventProcessingAdapter.. 5-4
5.2.2 Example 2 – DispatchAdapter ... 5-5
5.3 Customizing Existing Adapters.. 5-6
5.3.1 Custom Adapter Example 1 – DispatchAdapter .. 5-6
5.3.2 Custom Adapter Example 2 – PartyKYCCheckAdapter ... 5-7

6 User Defined Fields

6.1 Enabling UDF for a Particular Screen .. 6-1
6.1.1 UDF Metadata .. 6-1
6.1.2 Seed Data for the Task Codes .. 6-3
6.1.3 Screen Changes for Incorporating UDF ... 6-3
6.1.4 Linking of UDF to a Screen (Taskflow Code).. 6-4
6.2 Control Flow for UDF .. 6-4
6.2.1 Initial Screen Load ... 6-4
6.2.2 Extracting UDF Values on Submission... 6-4
6.2.3 Handling the Fetch of UDF Values ... 6-7
6.2.4 UDF Enabling Special Cases .. 6-9
6.2.5 Tips for Trouble Shooting.. 6-10
6.3 Limitations and Special Cases.. 6-11

7 ADF Screen Customizations

7.1 Seeded Customization Concepts .. 7-1
7.2 Customization Layer .. 7-2
7.3 Customization Class ... 7-2
7.4 Enabling Application for Seeded Customization... 7-4
7.5 Customization Project .. 7-7
7.6 Customization Role and Context.. 7-7

v

7.7 Customization Examples .. 7-10
7.7.1 Adding a Validator to Input Text Component... 7-10
7.7.2 Adding a UI Table Component to the Screen... 7-17
7.7.3 Adding a Date Component to a Screen ... 7-30
7.7.4 Removing existing UI components from a screen ... 7-64

8 SOA Customizations

8.1 Customization Layer .. 8-1
8.2 Customization Class ... 8-2
8.3 Enabling Application for Seeded Customization... 8-3
8.4 SOA Customization Example Use Cases... 8-4
8.4.1 Add a Partner Link to an Existing Process... 8-4
8.4.2 Add a Human Task to an Existing Process... 8-19

9 Batch Framework Extensions

9.1 Typical Business Day in OBP .. 9-1
9.2 Overview of Categories.. 9-2
9.2.1 Beginning of Day (BOD)... 9-2
9.2.2 Cut-off.. 9-2
9.2.3 End of Day (EOD).. 9-2
9.2.4 Internal EOD... 9-3
9.2.5 Statement Generation.. 9-3
9.2.6 Customer Communication ... 9-3
9.3 Batch Framework Architecture... 9-3
9.3.1 Static View .. 9-3
9.3.2 Dynamic View.. 9-4
9.4 Batch Framework Components .. 9-6
9.4.1 Category Components .. 9-6
9.4.2 Shell Components.. 9-7
9.4.3 Stream Components .. 9-8
9.4.4 Database Components ... 9-10
9.5 Batch Configuration .. 9-11
9.5.1 Creation of New Category... 9-11
9.5.2 Creation of Bean Based Shell .. 9-13
9.5.3 Creation of Procedure Based Shell ... 9-17
9.5.4 Population of Other Parameters ... 9-18
9.6 Batch Execution .. 9-20

10 Uploaded File Data Processing

10.1 Configuration ... 10-2
10.1.1 Database Tables and Setup ... 10-2
10.1.2 File Handlers ... 10-6
10.1.3 Record Handlers for Both Header and Details... 10-7
10.1.4 DTO and Keys Classes for Both Header and Details .. 10-8
10.1.5 XFF File Definition XML.. 10-10
10.2 Processing .. 10-12

vi

10.2.1 API Calls in the Handlers .. 10-13
10.2.2 Processing Adapter... 10-14
10.3 Outcome .. 10-15
10.4 Failure/Exception Handling .. 10-16

11 Alerts Extension

11.1 Transaction as an Activity .. 11-1
11.1.1 Activity Record ... 11-1
11.1.2 Attaching Events to Activity ... 11-2
11.1.3 Event Record ... 11-2
11.1.4 Activity Event Mapping Record... 11-3
11.1.5 Activity Log DTO ... 11-4
11.1.6 Alert Metadata Generation.. 11-4
11.1.7 Alert Message Template Maintenance .. 11-7
11.1.8 Alert Maintenance .. 11-8
11.2 Alert Subscription .. 11-9
11.2.1 Transaction API Changes .. 11-10
11.3 Alert Processing Steps ... 11-12
11.4 Alert Dispatch Mechanism ... 11-15
11.5 Adding New Alerts ... 11-18
11.5.1 New Alert Example .. 11-19
11.5.2 Testing New Alert... 11-20

12 Creating New Reports

12.1 Data Objects for the Report .. 12-1
12.2 Catalog Folder .. 12-4
12.3 Data Source ... 12-5
12.4 Data Model.. 12-5
12.5 XML View of Report.. 12-9
12.6 Layout of the Report.. 12-10
12.7 View Report in BIP .. 12-11
12.8 OBP Batch Report Configuration - Define the Batch Reports ... 12-12
12.9 OBP Batch Report Configuration - Define the Batch Report Shell 12-12
12.10 OBP Batch Report Configuration - Define the Batch Report Shell Dependencies 12-12
12.11 OBP Batch Report Configuration... 12-13
12.11.1 Batch Report Generation for a Branch Group Code .. 12-13
12.11.2 Batch Report Generation Status.. 12-14
12.11.3 Batch Report Generation Path... 12-14
12.12 OBP Adhoc Report Configuration... 12-15
12.12.1 Define the Adhoc Reports ... 12-15
12.12.2 Define the Adhoc Report Parameters .. 12-15
12.12.3 Define the Adhoc Reports to be listed in Screen .. 12-16
12.12.4 Adding Screen Tab for Report Module ... 12-16
12.13 Adhoc Report Generation – Screen 7775 .. 12-17
12.14 Adhoc Report Viewing – Screen 7779... 12-18

vii

13 Security Customizations

13.1 OPSS Access Policies – Adding Attributes... 13-3
13.1.1 Steps.. 13-3
13.2 OAAM Fraud Assertions – Adding Attributes ... 13-5
13.2.1 Steps.. 13-6
13.3 Matrix Based Approvals – Adding Attributes... 13-7
13.4 Security Validators... 13-7
13.4.1 Customer Validators .. 13-8
13.4.2 Account Validators ... 13-8
13.4.3 Business Unit Validators.. 13-9
13.5 Customizing User Search.. 13-9
13.5.1 Steps.. 13-9
13.6 Customizing One-Time-Password (OTP) Processing Logic.. 13-10
13.6.1 Steps.. 13-10
13.7 Customizing Role Evaluation ... 13-10
13.7.1 Steps.. 13-10
13.8 Customizing Limits Exclusions ... 13-10
13.8.1 Steps.. 13-11
13.9 Customizing Business Rules .. 13-11
13.9.1 Steps to Update the Business Rules by Browser .. 13-11
13.9.2 Steps to Update the Business Rules in JDeveloper .. 13-20

14 Loan Schedule Computation Algorithm

14.1 Adding a New Algorithm... 14-1
14.2 Consuming Third Party Schedules.. 14-4

15 Receipt Printing

15.1 Prerequisite ... 15-1
15.1.1 Identify Node Element for Attributes in Print Receipt Template.............................. 15-1
15.1.2 Receipt Format Template (.rtf).. 15-3
15.2 Configuration ... 15-4
15.2.1 Parameter Configuration in the BROPConfig.properties ... 15-4
15.2.2 Configuration in the ReceiptPrintReports.properties ... 15-5
15.3 Implementation .. 15-5
15.3.1 Default Nodes .. 15-6
15.4 Special Scenarios .. 15-6

16 Facts and Rules Configuration

16.1 Facts ... 16-1
16.1.1 Type of Facts ... 16-1
16.1.2 Facts Vocabulary... 16-2
16.1.3 Generation of Facts using Eclipse Plug-in .. 16-3
16.2 Business Rules ... 16-22
16.2.1 Rules Engine .. 16-22
16.2.2 Rules Creation by Guided Rule Editor .. 16-23

viii

16.2.3 Rules Creation By Decision Table .. 16-24
16.2.4 Rules Storage ... 16-25
16.2.5 Rules Deployment .. 16-25
16.2.6 Rules Versioning... 16-25
16.3 Rules Configuration in Modules ... 16-26
16.3.1 Generic Rules Configuration... 16-26
16.4 Rules Migration.. 16-29
16.4.1 Rules Configured for Modules ... 16-29

17 Composite Application Service

17.1 Composite Application Service Architecture .. 17-2
17.2 Multiple APIs in Single Module .. 17-2

18 ID Generation

18.1 Database Setup ... 18-2
18.1.1 Database Configuration ... 18-3
18.2 Automated ID Generation ... 18-3
18.3 Custom ID Generation ... 18-6

19 Extensibility of Domain Objects - Dictionary Pattern

19.1 Customized Domain Object Attribute Placeholders... 19-2
19.2 Customized Domain Object DTO Interceptor in UI Layer .. 19-3
19.2.1 Interceptor Hook to Persist Customized Domain Object Attributes 19-3
19.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes........................... 19-4
19.3 Dictionary Data Transfer from UI to Host ... 19-5
19.3.1 Customized Domain Object DTO Transfer from UI to Host...................................... 19-5
19.3.2 Customized Domain Object DTO transfer from Host to UI....................................... 19-9
19.4 Translating Dictionary Data into Custom Domain Object .. 19-13
19.4.1 Instantiation and Persistence of Custom Domain Objects.. 19-13
19.4.2 Fetching of Customized Domain Objects.. 19-14
19.5 Customized Domain Object ORM Configuration... 19-15
19.5.1 Case 1 - Non-Inheritance based mapping ... 19-15
19.5.2 Case 2 - Mapped as a Hibernate Subclass ... 19-18
19.5.3 Case 3 - Mapped as a Hibernate Union-Subclass or Joined-Subclass 19-20
19.5.4 Case 4 - Mapped as a Hibernate Component ... 19-23
19.6 Extensibility using Dictionary in Origination Application.. 19-23
19.6.1 ICustomDataHandler's as DictionaryArray Interceptor... 19-23
19.6.2 Create Customized Abstract Domain Object Class ... 19-24
19.6.3 Create Customized Abstract Domain Object Hibernate Mapping File 19-25
19.6.4 Create Customized Abstract Domain Object Attribute Columns 19-26
19.7 Extensibility using Attributes of Various Supported Datatypes 19-26

20 Deployment Guideline

20.1 Customized Project Jars .. 20-1
20.2 Database Objects ... 20-1
20.3 Extensibility Deployment .. 20-1

ix

21 Extensibility Usage – OBP Localization Pack

21.1 Localization Implementation Architectural Change .. 21-2
21.2 Customizing UI Layer ... 21-4
21.2.1 JDeveloper and Project Customization.. 21-4
21.2.2 Generic Project Creation .. 21-9
21.2.3 MAR Creation ... 21-9
21.3 Source Maintenance and Build .. 21-17
21.3.1 Source Check-ins to SVN... 21-17
21.3.2 .mar files Generated during Build.. 21-18
21.3.3 adf-config.xml ... 21-18
21.4 Packaging and Deployment of Localization Pack... 21-18

22 OCH Integration

22.1 Integration Adapter Interface... 22-2
22.2 Abstract Integration Adapter Class... 22-2
22.3 Sample Integration Adapter ... 22-3
22.4 Integration Abstract Assembler ... 22-4
22.5 Sample Assembler.. 22-5

A Appendix

x

xi

List of Figures

2–1 Extending Service Execution... 2-2
2–2 OBP Application Adapters .. 2-3
2–3 Configure User Defined Fields ... 2-3
2–4 ADF Screen Customization ... 2-5
2–5 SOA Customization .. 2-5
2–6 Batch Framework Extension.. 2-6
2–7 Upload File Processing... 2-7
2–8 Alerts Extension .. 2-8
2–9 Creating New Reports.. 2-9
2–10 Security Customization... 2-10
2–11 Loan Schedule Computation Algorithm .. 2-11
2–12 Print Receipt Functionality ... 2-11
2–13 Facts and Business Rules .. 2-12
2–14 Composite Application Service.. 2-13
2–15 ID Generation ... 2-13
2–16 OCH Integration .. 2-14
3–1 Standard Set of Framework Method Calls .. 3-2
3–2 Extension Hook for DocumentTypeApplicationService... 3-3
3–3 Default Application Service Extension .. 3-4
3–4 Application Service Extension Executor.. 3-5
3–5 ExtensionFactory Hook for DocumentTypeApplicationService ... 3-5
3–6 Factory Implementation of Extension Hook for DocumentTypeApplicationService....... 3-6
3–7 Extended Application Service Extension .. 3-7
3–8 Extended Application Service Extension - Post and Pre Hook.. 3-8
3–9 Extension Hook for DocumentTypeApplicationServiceSpi ... 3-9
3–10 Default Implementation of Appx Extension.. 3-10
3–11 Extended Application Service Extension Executor... 3-11
3–12 ExtensionFactory Hook for DocumentTypeApplicationServiceSpi................................. 3-12
3–13 Factory Implementation of Extension Hook for DocumentTypeApplicationServiceSpi.........

3-13
3–14 Maintenance of Document Types.. 3-14
3–15 DocumentTypeApplicationServiceSpiExt - Appx Layer ... 3-15
3–16 DocTypeApplicationServiceSpiExt - Appx Layer... 3-16
3–17 DocumentTypeApplicationServiceSpiExt - App Layer ... 3-17
3–18 DocTypeApplicationServiceSpiExt - App Layer... 3-18
5–1 Package Diagram .. 5-2
5–2 Adapter Mechanism Class Diagram .. 5-3
5–3 Adapter Mechanism Sequence Diagram... 5-4
5–4 Party KYC Status Check Adapter Interface .. 5-8
5–5 Default Implementation of IPartyKYCCheckAdapter Interface.. 5-8
5–6 KYC Adapter Factory with Mocking Support ... 5-9
6–1 UDF Metadata ... 6-2
6–2 Data Stored into the FCRThreadAttribute ... 6-3
6–3 LinkedUDFDTO.. 6-5
6–4 Extracting UDF DTO using instance of the LinkedUDFsHelper... 6-5
6–5 UIConfig.properties.. 6-5
6–6 Package Level Interactions .. 6-6
6–7 Sequence Diagram for UDF DTO ... 6-7
6–8 Package Level Interactions .. 6-8
6–9 Sequence Diagram .. 6-9
7–1 Customization Application View ... 7-1
7–2 CustomizationLayerValues.xml ... 7-2
7–3 Customization Class .. 7-3
7–4 Implementation for the abstract methods of CustomizationClass 7-4

xii

7–5 Enable Seeded Customizations... 7-5
7–6 Adding com.ofss.fc.demo.ui.OptionCC.jar .. 7-5
7–7 Adding com.ofss.fc.demo.ui.OptionCC.OptionCC ... 7-6
7–8 Adf-config.xml .. 7-6
7–9 Customization Developer.. 7-8
7–10 Selecting Always Prompt for Role Selection on Start Up ... 7-9
7–11 View Customization Context ... 7-10
7–12 Contact Point ... 7-11
7–13 DemoValidator.java .. 7-12
7–14 Managed Beans .. 7-12
7–15 Creating Managed Bean - Customization XML .. 7-13
7–16 Opening JSFF Screen - Show Libraries .. 7-13
7–17 Opening JSFF Screen - contactPoint.Jsff .. 7-14
7–18 Bind Validator to Component - Validator Property ... 7-15
7–19 Bind Validator to Component - telNumberValidator .. 7-15
7–20 Bind Validator to Component - contactPoint.jsff.xml .. 7-16
7–21 Contact Point screen .. 7-17
7–22 Adding a UI Table Component - Party Search screen.. 7-18
7–23 Adding a UI Table Component - Related Party screen .. 7-18
7–24 Creating Binding Bean Class .. 7-19
7–25 Create Event Consumer Class ... 7-20
7–26 Creating Managed Bean.. 7-20
7–27 Create Data Control ... 7-21
7–28 Adding View Object Binding to Page Definition - Add Tree Binding............................. 7-22
7–29 Adding View Object Binding to Page Definition - Update Root Data Source................ 7-23
7–30 Page Data Binding Definition - Insert Item.. 7-24
7–31 Page Data Binding Definition - Create Action Binding.. 7-25
7–32 Edit Event Map... 7-26
7–33 Event Map Editor .. 7-27
7–34 Add UI Components to Screen .. 7-28
7–35 Application Navigator .. 7-29
7–36 Party Search .. 7-30
7–37 Adding a Date Component .. 7-31
7–38 Create Table in Application Database ... 7-32
7–39 Create Java Project ... 7-32
7–40 Create Domain Objects ... 7-33
7–41 Create Interface .. 7-33
7–42 Create Class... 7-34
7–43 Preferences - Service Publisher .. 7-34
7–44 Preferences - WorkSpacePath... 7-35
7–45 Preferences - XML/JSON Facade .. 7-35
7–46 ApplicationService Generator.. 7-36
7–47 List of Classes Generated in the Project.. 7-36
7–48 ContactExpiryDTO. java file .. 7-37
7–49 Generate Service and Facade Layer Sources.. 7-38
7–50 ContactExpiryApplicationServiceSpi.java file before Modification................................. 7-39
7–51 ContactExpiryApplicationServiceSpi.java file after Modification.................................... 7-39
7–52 Contact Expiry Application Service - Contact Point Transaction..................................... 7-40
7–53 Java Packages.. 7-40
7–54 Export Project as a Jar.. 7-41
7–55 Create Hybernate Mapping.. 7-42
7–56 Adding an Entry in hostapplicationlayer.properties file ... 7-42
7–57 Adding an entry in ProxyFacadeConfig.properties file ... 7-43
7–58 Adding an entry in JSONServiceMap.properties file .. 7-43
7–59 Create Model Project - ADF Model ... 7-44

xiii

7–60 Create Model Project - Click Finish... 7-45
7–61 Create Application Module - ADF Business Components .. 7-46
7–62 Create Application Module - Set Package and Provide Name ... 7-46
7–63 Create Application Module - Summary ... 7-47
7–64 Create View Object - Provide Name ... 7-48
7–65 Create View Object - View Attribute .. 7-48
7–66 Create View Object - Application Module ... 7-49
7–67 Create View Object - Click Finish.. 7-49
7–68 Create View Controller Project - ADF View Controller Project.. 7-50
7–69 Create View Controller Project - Project Title.. 7-51
7–70 Create View Controller Project - Libraries and Classpath tab .. 7-52
7–71 Create View Controller Project - Dependencies Tab .. 7-52
7–72 Create an Interface ... 7-53
7–73 Create Update State Action Class.. 7-54
7–74 Create Update State Action Class - Service Exception ... 7-54
7–75 Create Backing Bean ... 7-55
7–76 Create Backing Bean - Save and Clear Method ... 7-56
7–77 Create Backing Bean - Contact Expiry DTO Method ... 7-56
7–78 Create Backing Bean - OnExpiryDateChange ... 7-56
7–79 Create Backing Bean - Value Change Event Handler... 7-57
7–80 Create Backing Bean - Contact Expiry Proxy Service ... 7-57
7–81 Create Managed Bean - Register Demo Contact Point... 7-58
7–82 Create Event Consumer Class.. 7-58
7–83 Create Data Control ... 7-59
7–84 Adding UI to Screens ... 7-60
7–85 Adding View Object Binding to Page Definition .. 7-60
7–86 Create Attribute Binding... 7-61
7–87 Adding Method Action Binding.. 7-61
7–88 Adding Method Action Binding - Demo Party Change Event Consumer..................... 7-62
7–89 Edit Event Map of Page Definition - Edit Mapping.. 7-62
7–90 Edit Event Map of Page Definition - ContactPoint.jsff.xml ... 7-63
7–91 Contact Point screen with Expiry Date field ... 7-64
7–92 Remove UI Components from Alert Maintenance screen ... 7-64
7–93 Create ADF View Controller Project - Project Technologies .. 7-65
7–94 Create View Controller Project - Libraries and Class Path .. 7-66
7–95 Modifications in the ActivityEventActionMaintenance.jsff.xml 7-67
7–96 Modified Alert Maintenance Screen .. 7-67
8–1 Add an entry for new Customization Layer... 8-2
8–2 Create Customization Class .. 8-3
8–3 Enabling Application for Seeded Customization... 8-4
8–4 Select SOA Project... 8-5
8–5 Enter SOA Project Name.. 8-5
8–6 Configure SOA Settings ... 8-6
8–7 Create Mediator... 8-7
8–8 Select Target Type... 8-7
8–9 Request Transformation Map to create new mapper file ... 8-8
8–10 Mapping Input and Output string ... 8-8
8–11 Select Deployment Action ... 8-9
8–12 Deploy Configuration Settings .. 8-10
8–13 Select Deployment Server.. 8-10
8–14 Select Target SOA Server .. 8-11
8–15 Select SOA Domain ... 8-11
8–16 Test Web Service .. 8-12
8–17 Customization of SOA Application - Flow .. 8-13
8–18 Customization of SOA Application - Notify Customer ... 8-14

xiv

8–19 Add Partner Link Component ... 8-15
8–20 Add Invoke Component ... 8-16
8–21 Edit Copy Rules Variable ... 8-17
8–22 Add Assign Components - Reply.. 8-17
8–23 Design View of the BPEL Process.. 8-18
8–24 Test Customized Composite - Flow .. 8-19
8–25 Test Customized Composite - invokeEchoService.. 8-19
8–26 Select SOA Project.. 8-20
8–27 Create SOA Project Name... 8-21
8–28 Configure SOA Settings .. 8-21
8–29 Configure BPEL Process Settings .. 8-22
8–30 Enter Human Task Name ... 8-22
8–31 Create Human Task - General Tab .. 8-23
8–32 Add Human Task Parameter ... 8-23
8–33 Create Human Task - Data Tab.. 8-23
8–34 Add Participant Type Details.. 8-24
8–35 Create Human Task - Assignment Tab... 8-24
8–36 Select Human Task Parameters ... 8-25
8–37 Create Human Task - Delete Condition ... 8-25
8–38 Create Human Task - Expression Builder .. 8-26
8–39 Create Human Task - Copy Rules ... 8-26
8–40 Create Human Task - BPEL Process.. 8-27
8–41 Select Human Task Form.. 8-28
8–42 Select Human Task Form Deployment Action.. 8-29
8–43 Select Human Task Form - Weblogic Options... 8-29
8–44 Add Customization Scope to SOA Application .. 8-30
8–45 Add Partner Link Component ... 8-31
8–46 Add Invoke Component .. 8-32
8–47 Add Receive Component using BPEL functions... 8-33
8–48 Add Assign Component ... 8-34
8–49 Deploy and Test Customized SOA Composite - My Tasks Tab 8-35
8–50 Deploy and Test Customized SOA Composite - Flow ... 8-35
8–51 Deploy and Test Customized SOA Composite - Invoke Input... 8-36
8–52 Deploy and Test Customized SOA Composite - Receive Output 8-36
9–1 Business Day in OBP .. 9-2
9–2 Batch Framework Architecture - Static View.. 9-4
9–3 Dynamic View Sequence Diagram... 9-5
9–4 State Diagram of a Shell ... 9-6
9–5 Creation of New Category.. 9-13
9–6 Population of Other Parameters .. 9-18
9–7 Population of Other Parameters - General Tab ... 9-19
9–8 Population of Other Parameters - Connection Pool.. 9-19
9–9 Population of Other Parameters - Set IS_DB_RAC... 9-20
9–10 Population of Other Parameters - Specify Data... 9-20
9–11 Batch Execution .. 9-21
10–1 Uploaded Data File Processing Framework .. 10-2
10–2 File Handlers... 10-7
10–3 Record Handlers for Both Header and Details.. 10-8
10–4 DTO and Keys Classes for Both Header and Details - HeaderRecDTOKey 10-9
10–5 DTO and Keys Classes for Both Header and Details - AbstractDTORec 10-10
10–6 XXF File Definition XML... 10-12
10–7 API Calls in Adapters.. 10-14
10–8 Processing Adapter.. 10-15
11–1 Sample script for Activity Record ... 11-2
11–2 Sample script for Event Record.. 11-3

xv

11–3 Activity Event Mapping Record .. 11-3
11–4 Activity Log DTO... 11-4
11–5 Metadata Generation... 11-5
11–6 Service Data Attribute Generation .. 11-6
11–7 Alert Message Template Maintenance.. 11-8
11–8 Alert Maintenance.. 11-9
11–9 Alert Subscription .. 11-10
11–10 Transaction API Changes - Service Call ... 11-10
11–11 Transaction API Changes - Conditional Evaluation... 11-11
11–12 Transaction API Changes - persistActivityLog(..)... 11-11
11–13 Transaction API Changes - Activity Log.. 11-11
11–14 Transaction API Changes - Register Activity ... 11-12
11–15 Alert Processing Steps ... 11-13
11–16 Event Processing Status Type .. 11-14
11–17 Batch Alerts... 11-15
11–18 Alert Dispatch Mechanism ... 11-16
11–19 Alert Dispatch Mechanism - Dispatcher Factory .. 11-17
11–20 Alert Dispatch Mechanism - Destination ... 11-18
12–1 Creating New Reports... 12-1
12–2 Global Temporary Table ... 12-2
12–3 Report Record Type... 12-2
12–4 Report Table Type.. 12-3
12–5 Report DML Function ... 12-3
12–6 Report DDL Function .. 12-4
12–7 Catalog Folder .. 12-5
12–8 Data Source ... 12-5
12–9 Data Model.. 12-6
12–10 Data Set.. 12-7
12–11 Group Fields ... 12-7
12–12 XML Structure and Labels .. 12-8
12–13 XML Code ... 12-8
12–14 Add Input Parameters.. 12-9
12–15 XML View of Report.. 12-9
12–16 Layout of the Report - Create Layout ... 12-10
12–17 Layout of the Report - Batch Job Results .. 12-11
12–18 View Report in BIP .. 12-11
12–19 Batch Report Generation for a Branch Group Code ... 12-14
12–20 Batch Report Generation Path.. 12-15
12–21 Adhoc Report Generation - Report Request .. 12-17
12–22 Adhoc Report Generation - Report Generated.. 12-17
12–23 Advice Report... 12-18
12–24 View Generated Adhoc Report.. 12-19
13–1 Security Customizations Interface... 13-2
13–2 Security Use Case with Access Checks and Assertions ... 13-3
13–3 Add Attributes to Access Policy Rule... 13-4
13–4 Attribute to Access Policy Rule - Authorization Management... 13-4
13–5 Add or Modify Access Policy Rule.. 13-5
13–6 Add or Modify Fraud Rules in OAAM - Data Tab ... 13-6
13–7 Add or Modify Fraud Rules in OAAM - Conditions Tab.. 13-7
13–8 Log in to BPM Worklist Application screen .. 13-12
13–9 Task Configuration tab.. 13-13
13–10 Stages of Approval... 13-14
13–11 Select Test Condition ... 13-15
13–12 Select Values ... 13-16
13–13 Select Specific Task .. 13-17

xvi

13–14 Update Values .. 13-18
13–15 Save the Updated Rule.. 13-19
13–16 Commit the Changes ... 13-20
13–17 Expand Business Rules.. 13-21
13–18 Create New Stage... 13-22
13–19 Add New Rule.. 13-23
13–20 Populate the New Rule ... 13-24
13–21 Deploy Project Jar .. 13-25
14–1 Add New Algorithm ... 14-1
14–2 Create New Installment .. 14-2
15–1 Input Property Files ... 15-2
15–2 Build Path of Utility... 15-2
15–3 Utility Execution .. 15-3
15–4 Excel Generation .. 15-3
15–5 Receipt Format Template.. 15-4
15–6 Receipt Print Reports... 15-5
15–7 Sample of Print Receipt ... 15-6
16–1 Select Window Preferences .. 16-4
16–2 Window Preferences - OBP Plugin Development... 16-5
16–3 Enter the Preferences Fact values .. 16-6
16–4 Fact Properties - aggregateCodeFilePath ... 16-7
16–5 Fact Properties - sourceFilePath... 16-7
16–6 Start Host Server .. 16-8
16–7 Select Open Perspective value ... 16-9
16–8 Fact Explorer... 16-10
16–9 Fact Vocabulary.. 16-11
16–10 Domain Category... 16-12
16–11 Fact Groups... 16-13
16–12 Facts ... 16-14
16–13 Business Definition Tab .. 16-14
16–14 Value Definition Tab ... 16-15
16–15 Enum Definition Tab ... 16-16
16–16 Aggregrate Definition Tab.. 16-17
16–17 Aggregate File Tab... 16-18
16–18 Creating New Fact - Add.. 16-19
16–19 Creating New Fact - Fact Business Definition ... 16-20
16–20 Creating New Fact - Domain Group... 16-21
16–21 Saving New Fact... 16-21
16–22 Saving New Fact - Fact Added... 16-22
16–23 Generic Rule Configuration.. 16-27
16–24 Rule Author - Decision Table ... 16-28
16–25 Rule Author - Expression Builder ... 16-29
17–1 Composite Application Service Architecture .. 17-2
18–1 Configuration of ID Generation Process .. 18-2
18–2 Automated ID Generation - Single Record View.. 18-5
18–3 Automated ID Generation - Generate Submission ID.. 18-5
18–4 Automated ID Generation - Submission ID Generation Service 18-6
18–5 Custom ID Generation - Custom ID Generator... 18-7
18–6 Custom ID Generation - Custom ID Generation Constants ... 18-8
18–7 Custom ID Generation - Custom Pattern Based Generator... 18-8
19–1 Extensibility of Domain Objects - Framework... 19-2
19–2 Code Extract.. 19-3
19–3 Interceptor Hook to Persist Customized Domain Object... 19-4
19–4 Interceptor Hook to Fetch Customized Domain Object... 19-5
19–5 JSONClient constructs the JSON Object ... 19-6

xvii

19–6 SerializeDictionaryArray to include GenericName and Value attributes 19-7
19–7 Host Server JSONFacade extracts the attribute of JSON Object 19-8
19–8 AbstractJSONFacade's getDictionaryArray method .. 19-9
19–9 Host Server JSONFacade constructs the JSON Object .. 19-10
19–10 AbstractJSONFacade's serializeDictionaryArray to include Generic Name and Value

attributes 19-11
19–11 UI Server JSONClient extracts the DictionaryArray attribute 19-12
19–12 AbstractJSONBindingStub's getDictionaryArray method .. 19-13
19–13 Instantiation of DataTransferObjects .. 19-15
19–14 Adding Discriminator Column Mapping in Existing HBM file 19-16
19–15 HBM File Mapping to Customized Domain Object.. 19-16
19–16 Adding New Java File to the Customized Domain Object .. 19-17
19–17 Adding Extra Columns along with the Discriminator Column...................................... 19-18
19–18 Adding a New HBM File Mapping to Customized Domain Object 19-19
19–19 Adding New Java File to Customized Domain Object... 19-20
19–20 New HBM File Mapping... 19-21
19–21 Adding New Java File ... 19-22
19–22 Create a New Table CZ_NAB_LM_PROPOSED_FACILITY .. 19-22
19–23 CustomDataHandler's as DictionaryArray Interceptor ... 19-24
19–24 Create Customized Abstract Domain Object Class .. 19-25
19–25 Create Customized Abstract Domain Object Hibernate Mapping File 19-25
19–26 Create Customized Abstract Domain Object Attribute Columns 19-26
19–27 Customized Message Template Class... 19-27
19–28 Domain Object Table .. 19-28
19–29 Hibernate File ... 19-28
19–30 JUnit Test Case ... 19-29
19–31 JUnit Adds Table Record .. 19-29
19–32 Dictionary Array Values ... 19-30
20–1 Extensibility Deployment ... 20-2
21–1 Perfection Capture Screen .. 21-2
21–2 Localization Implementation Architectural Change .. 21-3
21–3 Package Structure... 21-3
21–4 Customization of the JDeveloper .. 21-4
21–5 Customization Context in Customization Developer Role ... 21-5
21–6 Configure Design Time Customization layer .. 21-6
21–7 Enabling Seeded Customization.. 21-6
21–8 Library and Class Path .. 21-7
21–9 MDS Configuration ... 21-8
21–10 Manually Add entries ... 21-8
21–11 MAR Creation... 21-10
21–12 MAR Creation - Application Properties ... 21-11
21–13 MAR Creation - Create Deployment Profile.. 21-12
21–14 MAR Creation - MAR File Selection ... 21-13
21–15 MAR Creation - Enter Details .. 21-14
21–16 MAR Creation - ADF Library Customization.. 21-15
21–17 MAR Creation - Edit File .. 21-16
21–18 MAR Creation - Application Assembly.. 21-17
21–19 Package Deployment... 21-19
22–1 Integration Adapter Interface... 22-2
22–2 Abstract Integration Adapter Class... 22-3
22–3 Sample Integration Adapter ... 22-4
22–4 Integration Abstract Assembler ... 22-5
22–5 Sample Assembler.. 22-6

xviii

List of Tables

5–1 Components of Adapter Implementation .. 5-2
6–1 FLX_UD_SCREEN_BINDING ... 6-2
9–1 Database Server Components ... 9-10
9–2 FLX_BATCH_JOB_CATEGORY_MASTER .. 9-11
9–3 FLX_BATCH_JOB_GRP_CATEGORY... 9-11
9–4 FLX_BATCH_JOB_CATEGORY_DEPEND.. 9-12
9–5 FLX_BATCH_JOB_SHELL_MASTER.. 9-13
9–6 FLX_BATCH_JOB_SHELL_DTLS .. 9-14
9–7 FLX_BATCH_JOB_SHELL_DEPEND ... 9-15
9–8 Driver Table ... 9-15
9–9 Actions Table ... 9-16
10–1 FLX_EXT_FILE_UPLOAD_MAST ... 10-3
10–2 Mandatory Fields in Record Tables.. 10-4
10–3 FLX_EXT_FILE_PARAMS... 10-4
10–4 FLX_BATCH_JOB_SHELL_DTLS .. 10-5
10–5 XXF File Definition XML.. 10-11
10–6 Process Status .. 10-16
11–1 FLX_EP_ACT_B .. 11-2
11–2 FLX_EP_EVT_B ... 11-3
11–3 FLX_EP_ACT_EVT_B... 11-3
11–4 Key Fields in FLX_MD_SERVICE_ATTR.. 11-6
16–1 Example of a Decision Table ... 16-24
16–2 Actions.. 16-25
16–3 Conditions.. 16-25
16–4 Rules Versioning ... 16-25
16–5 Details of Configured Rules in Modules ... 16-30
17–1 Java Classes.. 17-2
18–1 FLX_CS_ID_CONFIG_B .. 18-2
18–2 FLX_CS_ID_RANGE .. 18-3
18–3 FLX_CS_ID_USF ... 18-3
21–1 Path Structure .. 21-17

xix

Preface

The Oracle Banking Platform Extensibility guide explains customization and extension
of Oracle Banking Platform.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for the users of Oracle Banking Platform.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documentation:

■ For installation and configuration information, see the Oracle Banking Installation
Guide - Silent Installation

■ For a comprehensive overview of security for Oracle Banking, see the Oracle
Banking Security Guide

■ For the complete list of Oracle Banking licensed products and the Third Party
licenses included with the license, see the Oracle Banking Licensing Guide

■ For information related to setting up a bank or a branch, and other operational and
administrative functions, see the Oracle Banking Administrator’s Guide

xx

■ For information on the functionality and features of the Oracle Banking product
licenses, see the respective Oracle Banking Functional Overview documents

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Objective and Scope 1-1

1Objective and Scope

This chapter defines the objective and scope of this document.

1.1 Overview
Oracle Banking Platform (OBP) is designed to help banks respond strategically to
today’s business challenges, while also transforming their business models and
processes to reduce operating costs and improve productivity across both front and
back offices. It is a one-stop solution for a bank that seeks to leverage Oracle Fusion
experience across its core banking operations across its retail and corporate offerings.

OBP provides a unified yet scalable IT solution for a bank to manage its data and
end-to-end business operations with an enriched user experience. It comprises
pre-integrated enterprise applications leveraging and relying on the underlying Oracle
Technology Stack to help reduce in-house integration and testing efforts.

1.2 Objective and Scope
While most product development can be accomplished using highly flexible system
parameters and business rules, further competitive differentiation can be achieved
through IT configuration and extension support. Time consuming, custom coding to
enable region specific, site specific or bank specific customizations can be minimized
by offering extension points and customization support which can be implemented by
the bank and / or by partners.

1.2.1 Extensibility Objective
OBP when extended and customized by the Bank and / or Partners results in reduced
dependence on Oracle. As a result of this, the Bank does not have to align plans with
Oracle’s release plans for getting certain customizations or product upgrades. The
bank has the flexibility to choose and do the customizations themselves or have them
done by partners.

One of the key considerations towards enabling extensibility in OBP has been to
ensure that the developed software can respond to future growth. This has been
achieved by disciplined software development leading to clearer dependencies,
well-defined interfaces and abstractions with corresponding reduction in high
cohesion and coupling. Hence, the extensions are kept separate from Core. Bank can
take advantage of OBP Core solution upgrades as most extensions done for a previous
release can be placed directly on top of the upgraded version. This reduces testing
effort thereby reducing overall costs of planning and taking up an upgrade. This can
also improve TTM significantly as the bank enjoys the advantage of getting universal
features through upgrades.

Objective and Scope

1-2 Oracle Banking Platform Extensibility Guide

The broad guiding principles with respect to providing extensibility in OBP are
summarized below:

■ Strategic intent for enabling customers and partners to extend the application.

■ Internal development uses the same principles for client specific customizations.

■ Localization packs

■ Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

■ Extensions through the addition of new functionality or modification of existing
functionality.

■ Planned focus on this area of the application. Hence, separate budgets specifically
for this.

■ Standards based - OBP leverages standard tools and technology

■ Leverage large development pool for standards based technology.

■ Developer tool sets provided as part of JDeveloper and Eclipse for productivity.

1.2.2 Document Scope
The scope of this document is to explain the customization and extension of OBP for
the following use cases:

■ Customizing OBP UI

■ Adding an ADF screen side validation to an existing field

■ Adding a new field or a table on the screen

■ Removing fields from the UI

■ Customizing OBP application services and implementing composite application
services

■ Adding pre-processing or post processing validations in the application services
extension

■ Altering the product behavior at customizations hooks provided as adapter calls
in functional areas that are prone to change (for example, loan schedule
generation) and in between modules that can be replaced (for example, alerts,
content management)

■ Adding new fields to the OBP domain model and including it on the
corresponding screen.

■ Adding a new report

■ Adding a new batch program

■ Customizing SOA based BPEL process with adding a partner link or a human task
to an existing process.

■ Adding new steps as a sub-process

■ Adding or customizing facts and business rules in the application and configuring
them for different modules

■ Adding or customizing ID generation logic with options of automated, manual or
custom generation

■ Processing of the uploaded files data

■ Printing of receipt once the transaction is over

Out of Scope

Objective and Scope 1-3

■ Defining the security related access and authorization policies

■ Defining different security related rules, validator and processing logics

■ Customizing different functionalities like user search, role evaluation and limit
exclusion in the application related to security

This document is a useful tool for Oracle Consulting, bank IT and partners for
customizing and extending the product.

1.3 Complementary Documentation
The document is a developer’s extensibility guide and does not intend to work as a
replacement of the functional specification which would be the primary resource
covering the following:

1. OBP installation and configuration

2. OBP parameterization as part of implementation

3. Functional solution and product user guide

1.4 Out of Scope
The scope of extensibility does not intend to suggest that OBP is forward compatible.

Out of Scope

1-4 Oracle Banking Platform Extensibility Guide

2

Overview of Use Cases 2-1

2Overview of Use Cases

The use cases that are covered in this document shall enable the developer in applying
the discipline of extensibility to OBP. While the overall support for customizations is
complete in most respects, the same is not a replacement for implementing a
disciplined, thoughtful and well-designed approach towards implementing extensions
and customizations to the product.

2.1 Extensibility Use Cases
This section gives an overview of the extensibility topics and customization use cases
to be covered in this document. Each of these topics is detailed in the further sections.

2.1.1 Extending Service Execution
In OBP, additional business logic might be required for certain services. This
additional logic is not part of the core product functionality but could be a client
requirement. For these purposes, hooks have been provided in the application code
wherein additional business logic can be added or overridden with custom business
logic.

Extensibility Use Cases

2-2 Oracle Banking Platform Extensibility Guide

Figure 2–1 Extending Service Execution

Following are the two hooks provided:

■ Service Extensions

This hook resides in the app layer of the application service. This hook is present
for, before as well after the actual service execution. The additional business logic
has to implement the interface I<service_name>ApplicationServiceExt and extend
and override the default implementation Void<service_name>ApplicationServiceExt
provided for the service. Multiple implementations can be defined for a particular
service. The service extensions executor invokes all the implementations defined
for the particular service both before and after the actual service executes.

■ Service Provider Extension

This hook resides in the appx layer of the application service. This hook, too, is
present for before as well after the actual service execution. The additional
business logic has to implement the interface I<service_
name>ApplicationServiceSpiExt and extend and override the default
implementation Void<service_name>ApplicationServiceExt provided for the service.
Multiple implementations can be defined for a particular service. The service
extensions executor invokes all the implementations defined for the particular
service both before and after the actual service executes.

2.1.2 OBP Application Adapters
In OBP, adapters are used for helping two different modules or systems to
communicate with each other. It helps in the consuming side adapters to any
incompatibility of the invoked interface to work together. This is done to achieve
cleaner build time separation of different functional product processor modules.

Extensibility Use Cases

Overview of Use Cases 2-3

Hence, when Loan Module needs to invoke services of Party Module or Demand
Deposit module then an adapter class owned by the Loans module will be used to
ensure that functions such as defaulting of values, mocking of an interface, and so on,
are implemented in the adapter layer thereby relieving the core module functionality
from getting corrupted.

Figure 2–2 OBP Application Adapters

2.1.3 User Defined Fields
There may be a requirement to capture additional data for certain objects/entities from
the product screens. These additional attributes are not a part of the core product
functionality but could be a client requirement.

Figure 2–3 Configure User Defined Fields

There are two ways in which additional data can be captured. These are:

■ User Defined Fields (UDF) Task-flow

The application provides a UDF task-flow which can be used for adding user
defined fields on a screen. UDF are useful for capturing and displaying additional
data. However, it is difficult to use this additional data in the business logic.
Hence, UDF are ideal for capturing data and reporting purposes. When using this

Extensibility Use Cases

2-4 Oracle Banking Platform Extensibility Guide

way for additional capture, simple changes on client side and minimal changes (or
no changes) on host side are required.

Client: The UDF task-flow needs to be incorporated in the screen for which the
additional fields need to be added. After adding the task-flow, you can add
additional fields and specify various attributes for it like label for the field,
mandatory field, and so on.

Host: The Appx layer needs to be enabled for the service. This layer contains the
required call to the UDFApplicationService. However, once this layer has been
enabled, you can add more fields without any need for modification on the host
side.

■ Custom Entities:

Additional fields can be added to objects / entities from the very base level (ORM
/ POJO layer) to the front end (View layer) level. This way is more costly since it
requires changes at all layers of the application. However, it has an advantage of
the ability to use the additional data in the business logic of the application.

Client: The UI of the screen in which the additional data needs to be captured has
to be modified for the additional fields. The view-service linkage also needs to be
modified for transferring the additional data.

Host: On the host side, the ORM and POJO for the entity have to be modified to
save the additional field's data. The service layer has to be modified for any
business logic that is affected by the additional fields.

2.1.4 ADF Screen Customization
OBP application may need to be customized for certain additional requirements.
However, since these additional requirements differ from client to client, and the base
application functionality remains the same, the code to handle the additional
requirements is kept separate from the code of the base application. For this purpose,
Seeded Customizations (built using Oracle Meta-data Services framework) can be
used to customize an application.

When designing seeded customizations for an application, one or more customization
layers need to be specified. A customization layer is used to hold a set of
customizations. A customization layer supports one or more customization layer value
which specifies the set of customizations to apply at runtime.

Extensibility Use Cases

Overview of Use Cases 2-5

Figure 2–4 ADF Screen Customization

2.1.5 SOA Customization
OBP Application provides the feature for customizing SOA composite applications
based on the additional requirements which may vary from client to client. It includes
implementing the partner link to an existing process or implementing human tasks or
sub processes which can be hooked into an existing product process.

Figure 2–5 SOA Customization

Extensibility Use Cases

2-6 Oracle Banking Platform Extensibility Guide

2.1.6 Batch Framework Extension
This extensibility feature is provided because most of the enterprise applications
require the bulk processing of records to perform business operations in real-time
environments. These business operations include complex processing of large volumes
of information that is most efficiently processed with minimal or no user interaction.
Such operations includes time-based events (For example, month-end calculations,
notices or correspondence), periodic application of complex business rules processed
repetitively across very large data sets (For example, rate adjustments).

All such scenarios form a part of batch processing for multiple records. Thus, Batch
processing is used to process billions of records for enterprise applications. There are
many categories in OBP Batch Processes like Beginning of Day (BOD), End of Day
(EOD), and Statement Generation, and so on, for which the batch execution is
performed.

Figure 2–6 Batch Framework Extension

2.1.7 Uploaded File Processing
File processing is an independent process and is done separately after file upload.
Every upload provides a unique field for the uploaded file. The processing is then
done for each upload as per the required functionality. The final status is provided at
the end of the processing in the form of ProcessStatus.

An example can be salary credit processing. Once the employer account details (in
header records) and the multiple employee account details (in detail records) are
uploaded through the file upload, the salary credit processing can be done in which
the employer account will be debited and the multiple accounts of the employees will
be credited.

Extensibility Use Cases

Overview of Use Cases 2-7

Figure 2–7 Upload File Processing

2.1.8 Alert Extension
OBP has to interface with various systems to transfer data which is generated during
business activities that take place during teller operations or processing. The system
requires a framework which can support on-line data transfer to interfacing systems.

This extension of event processing module of OBP provides a framework for
identifying executing host services as activities and generating / raising events that
are configured against the same. Generation of these events results in certain actions
that can vary from dispatching data to subscribers (customers or external systems) to
execution of additional logic. The action whereby data is dispatched to subscribers is
termed as Alert. In OBP application, these Alerts can be customized and configured.

Extensibility Use Cases

2-8 Oracle Banking Platform Extensibility Guide

Figure 2–8 Alerts Extension

2.1.9 New Reports Creation
OBP application provides functionality for configuring multiple reports through
integrated Oracle's Business Intelligence Publisher Enterprise. It is a standalone
reporting and document output management solution that allows companies to lower
the cost of ownership for separate reporting solutions. The developer can add and
configure an Adhoc report to OBP using the BI Publisher.

The OBP application also has a batch framework using which a developer can easily
add batch processes, also known as batch shells, to the application. The batch
framework executes all the batch shells defined in the system as per their
configuration. The results of these batch shell executions are stored in the database. In
OBP, the user can create and customize the batch reports based on the requirements
which can vary from client to client.

Extensibility Use Cases

Overview of Use Cases 2-9

Figure 2–9 Creating New Reports

2.1.10 Security Customization
OBP application comprises of several modules which have to interface with various
systems in an enterprise to transfer/share data. This data is generated during business
activity that takes place during teller operations or processing. While managing the
transactions that are within OBP's domain, it also needs to consider security and
identity management and the uniform way in which these services need to be
consumed by all applications in the enterprise. This is possible if these capabilities can
be externalized from the application itself and are implemented within products that
are specialized to handle such services.

Extensibility Use Cases

2-10 Oracle Banking Platform Extensibility Guide

Figure 2–10 Security Customization

OBP application therefore provides functionality where there is a provision for
customizing the security attributes or functions. For example:

■ Attributes participating in access policy rules

■ Attributes participating in fraud assertion rules

■ Attributes participating in matrix based approval checks

■ Account validator

■ Customer validator

■ Business unit validator

■ Adding validators

■ Customizing user search

■ Customizing 2FA ‘Send OTP | Validate OTP’ logic

■ Customizing Role Evaluation

■ Customizing Limit Exclusions

Extensibility Use Cases

Overview of Use Cases 2-11

2.1.11 Loan Schedule Computation Algorithm
OBP application provides the extensibility by which the additional loan schedule
computation algorithm can be customized based on client's requirement.

Figure 2–11 Loan Schedule Computation Algorithm

2.1.12 Print Receipt Functionality
OBP has many transaction screens in different modules where it is desired to print the
receipt with different details about the transaction. This functionality provides the
print receipt button on the top right corner of the screen which gets enabled on the
completion of the transaction and can be used for printing of receipt of the transaction
details.

Figure 2–12 Print Receipt Functionality

Extensibility Use Cases

2-12 Oracle Banking Platform Extensibility Guide

2.1.13 Facts and Business Rules
Fact (in an abstract way) is something which is a reality or which holds true at a given
point of time. Business rules are made up of facts. Business Rules are defined for
improving agility and for implementing business policy changes. This agility, meaning
fast time to market, is realized by reducing the latency from approved business policy
changes to production deployment to near zero time. In addition to agility
improvements, Business Rules development also requires far fewer resources for
implementing business policy changes. This means that Business Rules not only
provides agility, it also provides the bonus reduced cost of development.

Figure 2–13 Facts and Business Rules

2.1.14 Composite Application Service
OBP provides the extensibility feature by which developer can write the composite
service in which multiple service calls can be made as part of single call. Transactions
in composite application service are made by composing the single transaction out of
the multiple APIs transaction that gives the effect of single transaction.

Extensibility Use Cases

Overview of Use Cases 2-13

Figure 2–14 Composite Application Service

2.1.15 ID Generation
OBP is shipped with the functionality of ID generation in three ways that is,
Automatic, Manual and Custom. These three configurations can be defined by the
banks as per their requirements and IDs can be generated accordingly.

Figure 2–15 ID Generation

2.1.16 OCH Integration
OBP provides various integration adapters and assemblers which are used to publish
customer information to OCH. These adapters and assemblers can be customized for
publishing details to OCH.

Extensibility Use Cases

2-14 Oracle Banking Platform Extensibility Guide

Customization developer can extend the existing integration adapters to fetch or
gather more information about the customer and customize integration assembler to
add new mappings.

Figure 2–16 OCH Integration

3

Extending Service Executions 3-1

3Extending Service Executions

This chapter describes how additional business logic can be added prior to execution
(pre hook) and/or post the execution (post hook) of particular application service
business logic on the host side. Extension prior to a service execution can be required
for the purposes of additional input validation, input manipulation, custom logging
and so on.

An application service extension in the form of a pre hook can be important in the
following scenarios:

■ Additional input validations

■ Execution of business logic, which necessarily has to happen before going ahead
with normal service execution.

An application service extension in the form of a post hook can be important in the
following scenarios:

■ Output response manipulation

■ Third party system calls in the form of web service invocation, JMS interface and
so on.

■ Custom data logging for subsequent processing or reporting.

The OBP application provides two layers where the pre and post extension hooks for
extending service execution can be implemented. These places are:

■ Application Service – referred to as the “app” layer extension.

■ Extended Application Service – referred to as the “appx” layer extension.

There are few differences in the extensions of the app and appx layer:

■ In the appx layer extension, the validations can be added against the user defined
fields which is not possible in case of the app layer.

■ In the appx layer extension, the service response can be passed when the return
type is not transaction status. This response can be validated or updated which is
not available in case of app layer.

■ In the appx layer, the approvals can be incorporated and can be validated in the
appx layer extension which is not possible in app layer.

3.1 Service Extension – Extending the “app” Layer
The "app" layer is referred to as the application service layer. It denotes the business
logic that executes as part of a service method exposed by OBP middleware host.
Extension points provided as pre and post hooks are present in this layer at the same

Service Extension – Extending the “app” Layer

3-2 Oracle Banking Platform Extensibility Guide

points in the service. Every application service method has a standard set of
framework method calls as shown in the sequence diagram below:

Figure 3–1 Standard Set of Framework Method Calls

The pre hook is provided after the invocation of createTransactionContext call inside
the application service. At this step, the transaction context is set and the host
application core framework is aware of the executing service with respect to the
authenticated subject or the user who has posted the transaction, transaction inputs,
financial dates, different determinant types applicable for the executing service, an
initialized status and has the ability to track the same against a unique reference
number. At this step, the database session is also initialized and accessible enabling the
user to use the same in the pre hook for any database access which needs to be made.

The post hook is provided after the business logic corresponding to the application
service invoked has executed and before the successful execution of the entire service
is marked in the status object. This ensures that the status marking takes into
consideration any execution failures of post hook prior to reporting the result to the
calling source. Both, the pre and the post hooks accept the service input parameters as
the inputs.

The following sections explain important concepts, which should be understood for
extending in this service layer.

Service Extension – Extending the “app” Layer

Extending Service Executions 3-3

3.1.1 Application Service Extension Interface
The OBP plug-in for eclipse generates an interface for the extension of a particular
service. The interface name is in the form I<Service_Name>ApplicationServiceExt.
This interface has a pair of pre and post method definitions for each application
service method of the present. The signatures of these methods are:

public void pre<Method_Name>(<Method_Parameters>) throws FatalException;
public void post<Method_Name>(<Method_Parameters>) throws FatalException;
A service extension class has to implement this interface. The pre method of the
extension is executed before the actual service method and the post method of the
extension is executed after the service method.

Figure 3–2 Extension Hook for DocumentTypeApplicationService

3.1.2 Default Application Service Extension
The OBP plug-in for eclipse generates a default extension for a particular service in the
form of the class Void<Service_Name>ApplicationServiceExt. This class implements
the aforementioned service extension interface without any business logic if the
implemented methods are empty.

The default extension is a useful and convenient mechanism to implement the pre and
/ or post extension hooks for specific methods of an application service. Instead of
implementing the entire interface, one should extend the default extension class and
override only required methods with the additional business logic. Product developers
DO NOT implement any logic, including product extension logic, inside the default

Service Extension – Extending the “app” Layer

3-4 Oracle Banking Platform Extensibility Guide

extension classes. This is because the classes are auto-generated and reserved for
product use and get overwritten as part of a bulk generation process.

Figure 3–3 Default Application Service Extension

3.1.3 Application Service Extension Executor
The OBP plug-in for eclipse generates a service extension executor interface and an
implementation for the executor interface. The naming convention for the generated
executor classes which enable ’extension chaining’ is as shown below:

Interface : I<Application Service Qualifier>ApplicationServiceExtExecutor
Implementation : <Application Service Qualifier>ApplicationServiceExtExecutor

The service extension executor class, on load, creates an instance each of all the
extensions defined in the service extensions configuration file. If no extensions are
defined for a particular service, the executor creates an instance of the default
extension for the service. The executor also has a pair of pre and post methods for each
method of the actual service. These methods in turn call the corresponding methods of
all the extension classes defined for the service.

Service Extension – Extending the “app” Layer

Extending Service Executions 3-5

Figure 3–4 Application Service Extension Executor

Figure 3–5 ExtensionFactory Hook for DocumentTypeApplicationService

Service Extension – Extending the “app” Layer

3-6 Oracle Banking Platform Extensibility Guide

Figure 3–6 Factory Implementation of Extension Hook for DocumentTypeApplicationService

3.1.4 Extension Configuration
The extension classes that implement the extension interface are mapped to the
application service class with the help of a property file mapping inside
serviceextensions.properties. The mapping convention to be specified is a service's
fully qualified class name to comma separated extensions' fully qualified class name in
the following format:

<service_class_name>=<extension_class_name>,<extension_class_name>...
Example Mapping : config/properties/serviceextensions.properties
Single extension configuration
com.ofss.fc.app.content.service.DocumentTypeApplicationService=
com.ofss.fc.app.content.service.ext.DocumentTypeApplicationServiceExt
Multiple extension configuration
com.ofss.fc.app.content.service.DocumentTypeApplicationService=
com.ofss.fc.app.content.service.ext.in.DocumentTypeApplicationServiceExtension,
com.ofss.fc.app.content.service.ext.in.mum.DocumentTypeApplicationServiceExtension
,
com.ofss.fc.app.content.service.ext.in.mum.ExtendedDocumentTypeApplicationService,
com.ofss.fc.app.content.service.ext.in.blr.DocumentTypeApplicationServiceExtension
,
com.ofss.fc.app.content.service.ext.in.blr.ExtendedDocumentTypeApplicationService

It is possible to configure multiple implementations of pre / post extensions for an
executing service in this layer. This is achieved with the help of the extension executor
which has the capability to loop through a set of extension implementations which
conform to the extension interface which is supported by the service.

Extended Application Service Extension – Extending the “appx” Layer

Extending Service Executions 3-7

3.2 Extended Application Service Extension – Extending the “appx”
Layer

The ’appx’ layer is referred to as the extended application service layer. It represents
the business logic that executes as part of a service method exposed by OBP
middleware host with additional internal service calls to support extended features
such as user defined fields (UDF). The appx layer also provides extension support, on
top of and on the lines of the app layer. The implementation of extension support in
this layer is similar to the implementation of extension support in the app layer.

Figure 3–7 Extended Application Service Extension

The pre hook is provided before the invocation of actual application service call inside
the extended application service layer. At this step, the extended host application core
framework is aware of the executing service with respect to the authenticated subject
or the user who has posted the transaction and an initialized status. At this step, the
database session is also initialized and accessible enabling the user to use the same in
the pre hook for any database access which might be required.

The post hook is provided after the primary application service which is extended in
the appx layer along with the remaining internal service calls to support extended
features like UDF complete execution and before the successful execution of the entire
service is marked in the status object. This ensures that the status marking takes into
consideration any execution failures of post hook prior to reporting the result to the
calling source. Both, the pre and the post hooks accept the service input parameters
including UDF data as their inputs. Additionally, if the response type of the object

Extended Application Service Extension – Extending the “appx” Layer

3-8 Oracle Banking Platform Extensibility Guide

returned by the primary app layer application service is other TransactionStatus, the
same is also accepted as input by the post hook.

The following sections explain the important concepts which should be understood for
extending in this appx layer.

Figure 3–8 Extended Application Service Extension - Post and Pre Hook

The following concepts are important for extending in this service provider layer:

3.2.1 Extended Application Service Extension Interface
The OBP plug-in for eclipse generates an interface for the extension of a particular
service. The interface name is in the form I<Service_Name>ApplicationServiceSpiExt.
This interface has a pair of method definitions for each method of the present in the
actual service. The signatures of these methods are:

public void pre<Method_Name>(<Method_Parameters>) throws FatalException;
public void post<Method_Name>(<Method_Parameters>) throws FatalException;

An extended application service extension class has to implement this interface. The
pre method of the extension is executed before the actual service method and the post
method of the extension is executed after the service method.

Extended Application Service Extension – Extending the “appx” Layer

Extending Service Executions 3-9

Figure 3–9 Extension Hook for DocumentTypeApplicationServiceSpi

3.2.2 Default Implementation of Appx Extension
The OBP plug-in for eclipse generates a default service extension for a particular
service in the form of the class Void<Service_Name>ApplicationServiceSpiExt. This
class implements the aforementioned service provider extension interface without any
business logic viz. the implemented methods are empty.

The default extension is a useful and convenient mechanism to implement the pre and
/ or post extension hooks for specific methods of an application service. Instead of
implementing the entire interface, one should extend the default extension class and
override only required methods with the additional business logic. Product developers
DO NOT implement any logic, including product extension logic, inside the default
extension classes. This is because the classes are auto-generated and reserved for
product use and may get overwritten as part of a bulk generation process.

Extended Application Service Extension – Extending the “appx” Layer

3-10 Oracle Banking Platform Extensibility Guide

Figure 3–10 Default Implementation of Appx Extension

3.2.3 Configuration
The service provider extension class to the service class mapping is defined in a
property file ServiceProviderExtensions.properties under "config/properties".
Multiple extensions can be defined for a particular service provider with the help of
the extension executor. The pre and post extensions are defined in the service layer.

The mapping is specified for a service provider extension interface's fully qualified
class name to service provider extension class's fully qualified class name in the
following format:

<service_provider_interface_name>=<service_provider_extension_class_
name>,<service_provider_extesion_class_name>
Example Mapping : config/properties/ServiceProviderExtensions.properties
Single extension configuration
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServiceSpi=
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServiceSpiExt
Multiple extension configuration
com.ofss.fc.appx.content.service.ext.DocumentTypeApplicationServiceSpi=
com.ofss.fc.appx.content.service.ext.in.DocumentTypeApplicationServiceExt,
com.ofss.fc.appx.content.service.ext.in.mum.DocumentTypeApplicationServiceExt,
com.ofss.fc.appx.content.service.ext.in.mum.ExtendedDocumentTypeApplicationService
, com.ofss.fc.appx.content.service.ext.in.blr.DocumentTypeApplicationServiceExt,
com.ofss.fc.appx.content.service.ext.in.blr.ExtendedDocumentTypeApplicationService

Extended Application Service Extension – Extending the “appx” Layer

Extending Service Executions 3-11

3.2.4 Extended Application Service Extension Executor
The OBP plug-in for eclipse generates a service provider extensions executor interface
and an implementation class in the form of the following naming convention.

I<ApplicationServiceQualifier>ApplicationServiceSpiExtExecutor
<ApplicationServiceQualifier>ApplicationServiceSpiExtExecutor
The extended application service extension executor class, on load, creates an instance
each of all the extensions defined in the service provider extensions configuration file.
If no extensions are defined for a particular service provider, the executor creates an
instance of the default extension for the appx service. The executor also has a pair of
pre and post methods for each method of the actual appx service. These methods in
turn delegate the call to the corresponding methods of all the extension classes
configured inside the properties file for the service provider.

Figure 3–11 Extended Application Service Extension Executor

Extended Application Service Extension – Extending the “appx” Layer

3-12 Oracle Banking Platform Extensibility Guide

Figure 3–12 ExtensionFactory Hook for DocumentTypeApplicationServiceSpi

End-to-End Example of an Extension

Extending Service Executions 3-13

Figure 3–13 Factory Implementation of Extension Hook for DocumentTypeApplicationServiceSpi

3.3 End-to-End Example of an Extension
This section gives an end-to-end example of extensions written in the appx layer using
the extended application service extensions as well as app layer application service
extensions. The example shall implement this by extending the default
implementation of the appx extension class
Void<ApplicationServiceQualifier>ApplicationServiceSpiExt class and app extension
class Void<ApplicationServiceQualifier>ApplicationServiceExt.

For example, Back Office -> Content -> Document Type Definition screen of the
application.

This screen is used for the maintenance of Document Types defined in the application.

End-to-End Example of an Extension

3-14 Oracle Banking Platform Extensibility Guide

Figure 3–14 Maintenance of Document Types

The Create tab of the screen allows a user to create document types in the application.
On click of Ok, and after successful validation of the input entered by the user, the
screen extracts the values. It calls the DocumentTypeApplicationServiceSpi (in appx
layer) and DocumentTypeApplicationService (in app layer) on the host application to
save the document type in the system.

In this example, we have added multiple extensions to this service of the appx layer
through the extension executor where the update of the description is done in one of
the extension and check the length of name in another in the pre extension method.

End-to-End Example of an Extension

Extending Service Executions 3-15

Figure 3–15 DocumentTypeApplicationServiceSpiExt - Appx Layer

End-to-End Example of an Extension

3-16 Oracle Banking Platform Extensibility Guide

Figure 3–16 DocTypeApplicationServiceSpiExt - Appx Layer

In this example, we have added multiple extensions to the service of the app layer
through the extension executor and implemented a not null and size check on the
document tags in pre hook of the app layer to validate that document tags are sent as
input in the application service.

End-to-End Example of an Extension

Extending Service Executions 3-17

Figure 3–17 DocumentTypeApplicationServiceSpiExt - App Layer

End-to-End Example of an Extension

3-18 Oracle Banking Platform Extensibility Guide

Figure 3–18 DocTypeApplicationServiceSpiExt - App Layer

4

OBP Proxy Extension 4-1

4OBP Proxy Extension

OBP Proxy Extension functionality is driven by a preference named
"ProxyFacadeExtension" whose key-value properties are provided by a java class -
com.ofss.fc.common.ProxyFacadeExtensionConfig. This java class will have fully
qualified name (replacing '.' With '_') of a proxy as a variable name and fully qualified
name of a target proxy as a variable value.

For example,

public final String com_ofss_fc_xyz_ProductProxyFacade =
"com.ofss.fc.osb.xyz.ProductProxyFacade"; // notice usage of '_' in place of '.'
in variable name.

Sample Existing Code:
public TransactionStatus addReferenceObject(SessionContext sessionContext,
ReferenceObjectDTO referenceObjectDTO) throws FatalException, ServiceException {
 if (logger.isLoggable(Level.FINE)) {
 logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Entry");
 logger.log(Level.FINE, logAppServiceMessage(sessionContext));
 logger.log(Level.FINE, logAppServiceMessage(referenceObjectDTO));
 }
 TransactionStatus returnObj = null;
 try {

this.overrideProtocol("ReferenceObjectApplicationServiceProxy.addReferenceObject")
;
 this.populateDictionaryData(referenceObjectDTO);
 if ("JSON".equals(protocol) && "APP".equals(hostApplicationLayer)) {

com.ofss.fc.app.me.service.referencedata.service.json.client.ReferenceObjectApplic
ationServiceJSONClient jsonStub = new
com.ofss.fc.app.me.service.referencedata.service.json.client.ReferenceObjectApplic
ationServiceJSONClient(jsonServiceUrl);
 returnObj = jsonStub.addReferenceObject(sessionContext,
referenceObjectDTO);
 } else if ("LOCAL".equals(protocol) &&
"APP".equals(hostApplicationLayer)) {
 try {
 Object[] args = new Object[] { sessionContext,
referenceObjectDTO };
 String stringToCompleteClassName =
"com.ofss.fc.app.me.service.referencedata.ReferenceObjectApplicationService";
 Object obj =
ReflectionHelper.getInstance().getClass(stringToCompleteClassName).newInstance();

4-2 Oracle Banking Platform Extensibility Guide

 returnObj = (TransactionStatus)
ReflectionHelper.getInstance().invokeMethod(obj, "addReferenceObject", args);
 } catch (Exception e) {
 throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
 }
 } else {
 logger.log(Level.SEVERE, THIS_COMPONENT_NAME, "No valid protocol
and hostApplicationLayer combination found");
 logger.log(Level.SEVERE, THIS_COMPONENT_NAME, SERVICE_NOT_
AVAILABLE);
 }
 this.populateTransactionStatus(returnObj);
 } catch (IOException e) {
 logger.log(Level.SEVERE, THIS_COMPONENT_NAME, e);
 throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
 }
 if (logger.isLoggable(Level.FINE)) {
 logger.log(Level.FINE, THIS_COMPONENT_NAME + " addReferenceObject()
Exit");
 logger.log(Level.FINE, logAppServiceMessage(returnObj));
 }
 return returnObj;
 }

Sample Existing Code will be changed to:
public TransactionStatus addReferenceObject(SessionContext sessionContext,
ReferenceObjectDTO referenceObjectDTO) throws FatalException, ServiceException {

 if (logger.isLoggable(Level.FINE)) {
 logger.log(Level.FINE, THIS_COMPONENT_NAME + "
addReferenceObject() Entry");
 logger.log(Level.FINE, logAppServiceMessage(sessionContext));
 logger.log(Level.FINE,
logAppServiceMessage(referenceObjectDTO));
 }
 TransactionStatus returnObj = null;
 try {
 if (isProxyExtended(this)) {
 Serializable overriddenResponse =
invokeExtendedProxy(this, sessionContext, "addReferenceObject",
referenceObjectDTO);
 if (overriddenResponse != null) {
 if (overriddenResponse instanceof
TransactionStatus) {
 return (TransactionStatus)
overriddenResponse;
 } else {
 logger.log(Level.SEVERE,
 THIS_COMPONENT_NAME,
 "Invalid response returned
from the overridden proxy. Response expected is an instance of
TransactionStatus.");
 throw new
ServiceException(BranchErrorConstants.FC_OVR_RESP_INV);
 }
 } else {
 logger.log(Level.SEVERE,
 THIS_COMPONENT_NAME,
 "Null response returned from the

OBP Proxy Extension 4-3

overridden proxy. Response expected is an instance of TransactionStatus.");
 throw new
ServiceException(BranchErrorConstants.FC_OVR_RESP_NULL);
 }
 } else {
 this.populateDictionaryData(referenceObjectDTO);
 if ("JSON".equals(protocol) &&
"APP".equals(hostApplicationLayer)) {

com.ofss.fc.app.me.service.referencedata.service.json.client.ReferenceObjectApplic
ationServiceJSONClient jsonStub = new
com.ofss.fc.app.me.service.referencedata.service.json.client.ReferenceObjectApplic
ationServiceJSONClient(jsonServiceUrl);
 returnObj =
jsonStub.addReferenceObject(sessionContext, referenceObjectDTO);
 } else if ("LOCAL".equals(protocol) &&
"APP".equals(hostApplicationLayer)) {
 try {
 Object[] args = new Object[] {
sessionContext, referenceObjectDTO };
 String stringToCompleteClassName =
"com.ofss.fc.app.me.service.referencedata.ReferenceObjectApplicationService";
 Object obj =
ReflectionHelper.getInstance().getClass(stringToCompleteClassName).newInstance();
 returnObj = (TransactionStatus)
ReflectionHelper.getInstance().invokeMethod(obj, "addReferenceObject", args);
 } catch (Exception e) {
 throw new ServiceException(SERVICE_NOT_
AVAILABLE, e);
 }
 } else {
 logger.log(Level.SEVERE, THIS_COMPONENT_NAME,
"No valid protocol and hostApplicationLayer combination found");
 logger.log(Level.SEVERE, THIS_COMPONENT_NAME,
SERVICE_NOT_AVAILABLE);
 }
 this.populateTransactionStatus(returnObj);
 }
 } catch (Throwable e) {
 logger.log(Level.SEVERE, THIS_COMPONENT_NAME, e);
 throw new ServiceException(SERVICE_NOT_AVAILABLE, e);
 }
 if (logger.isLoggable(Level.FINE)) {
 logger.log(Level.FINE, THIS_COMPONENT_NAME + "
addReferenceObject() Exit");
 logger.log(Level.FINE, logAppServiceMessage(returnObj));
 }
 return returnObj;
 }

4-4 Oracle Banking Platform Extensibility Guide

5

OBP Application Adapters 5-1

5OBP Application Adapters

An adapter, by definition, helps the interfacing or integrating components to adapt. In
software it represents a coding discipline that helps two different modules or systems
to communicate with each other and helps the consuming side to adapt to any
incompatibility of the invoked interface to work together. Incompatibility could be in
the form of input data elements which the consumer does not have and hence might
require defaulting or the invoked interface might be a third party interface with a
different message format requiring message translation. Such functions, which do not
form part of the consumer functionality, can be implemented in the adapter layer.

In OBP, adapters are used for the above purposes as well as to achieve cleaner build
time separation of different functional product processor modules. Hence, when Loan
Module needs to invoke services of Party Module or Demand Deposit module then an
adapter class owned by the Loans module will be used to ensure that functions such as
defaulting of values, mocking of an interface, and so on, are implemented in the
adapter layer thereby relieving the core module functionality from getting corrupted.

The design of the adapter layer is based on the Separated Interface design pattern and
the access mechanism of the adapters by modules is implemented using an Abstract
Factory design pattern. The adapter implementation is explained in the sections below
as it exists in OBP.

5.1 Adapter Implementation Architecture
This section provides a detailed explanation of the adapter implementation
architecture.

5.1.1 Package Diagram
The components of adapter implementation in OBP are structurally placed in separate
projects to enable OBP to achieve build time independence between functional
modules of the product. The way this is achieved is detailed in the table below and
depicted with package diagram, class diagrams and an example usage mechanism.

Adapter Implementation Architecture

5-2 Oracle Banking Platform Extensibility Guide

Hence, if Loans module (that is, com.ofss.fc.module.loan) and Party module (that is,
com.ofss.fc.module.party) are any two modules that need to communicate, the
package dependency diagram is depicted below:

Figure 5–1 Package Diagram

The dependencies among the packages are:

■ Package com.ofss.fc.app.adapter.internal.interface only depends on DTO’s.

■ Any module package depends on the Adapter interfaces and DTO’s to
communicate with another module.

■ Package com.ofss.fc.app.adapter.impl depends on all the packages.

In this manner, the loans module is developed into a functional module which is
structurally modular and independent in terms of development and build from the
party module and vice versa. Same is true for all modules developed in OBP.

Table 5–1 Components of Adapter Implementation

Sr. Project Name Description Example

1 com.ofss.fc.app.xface DTO project. Holds all DTOs that are
used in the module application
services request and response DTOs.

2 com.ofss.fc.app.adapte
r.internal.interface

Package contains adapter interfaces
for all modules and the abstract
factory implementation (i.e. factory of
adapter factories).

com.ofss.fc.app.adapter.ep.IEventProcess
ingAdapter

Abstract Factory

com.ofss.fc.app.adapter.AdapterFactory

3 com.ofss.fc.app.adapte
r.impl

This project has the implementation
of adapter interfaces and
corresponding adapter factories.

com.ofss.fc.app.adapter.ep.impl.EventPr
ocessingAdapter

com.ofss.fc.app.adapter.ep.impl.EventPr
ocessingAdapterFactory

Adapter Implementation Architecture

OBP Application Adapters 5-3

5.1.2 Adapter Mechanism Class Diagram
An Application Service in calling module calls the getAdapterFactory() method of
class AdapterFactoryConfigurator which returns an instance of an implementation of
the abstract class AdapterFactory. The class of instance is decided by the string
parameter passed to the method.

The getAdapter() method in the AdapterFactory returns an adapter instance. The class
of instance is decided by the string parameter passed to the method.

The Application Service then uses this adapter instance to access any data from an
application service within another module.

Figure 5–2 Adapter Mechanism Class Diagram

5.1.3 Adapter Mechanism Sequence Diagram
A method in an application service gets an instance of a desired adapter factory by
calling getAdapterFactory() method of AdapterFactoryConfigurator class. The
instance of the adapter factory obtained is used to call getAdapter() method to get an
instance of the adapter. This adapter instance has all the methods to communicate to
the service in another module.

Examples of Adapter Implementation

5-4 Oracle Banking Platform Extensibility Guide

Figure 5–3 Adapter Mechanism Sequence Diagram

5.2 Examples of Adapter Implementation
This section provides multiple adapter usage scenarios with code snippets. The section
also has examples describing the steps for implementing custom adapters and their
factory implementation. The same mechanism applies to all adapters which are
provided by different modules in OBP. The adapter factory additionally supports
mocking of the adapter. OBP depends on the DI feature function supported by Jmock
to enable mocking of adapters.

The custom adapter, adapter factory and corresponding constants are depicted in code
samples below:

5.2.1 Example 1 – EventProcessingAdapter
Code snippet to invoke a method processActivityEvents() in alerts module from a
different module:

… Constants definition …
public static final String EVENT_PROCESSING = "EVENT_PROCESSING";
public static final String MODULE_TO_ACTIVITY = "ModuleToActivityAdapter";
… Adapter usage …
com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory(ModuleConstant.EVENT_
PROCESSING);
IEventProcessingAdapter adapter = (IEventProcessingAdapter)
adapterFactory.getAdapter (EventProcessingAdapterConstant.MODULE_TO_ACTIVITY);
adapter.processActivityEvents();

The parameters passed in the getAdapterFactory() and getAdapter() methods are
String constants denoting instance of which class has to be returned. These string
values are maintained as constants. In the example given below, the string constant is
created in a constants file (in this example, it the constants file is ModuleConstant).

Examples of Adapter Implementation

OBP Application Adapters 5-5

public static final String EVENT_PROCESSING = "EVENT_PROCESSING";

An entry is made in AdapterFactories.properties corresponding to the string constant.
This entry specifies the adapter factory class corresponding to the above constant
which should be instantiated and returned. The adapter factory has the intelligence of
all adapters along with adapter methods which are mocked as and where required.

EVENT_PROCESSING=com.ofss.fc.app.adapter.impl.ep.EventProcessingAdapterFactory

While implementing the adapter factory, developers can choose to have a separate
factory specific constants on the basis of which to manage multiple adapters from the
same factory. Alternatively, developers can choose to create an adapter factory each for
an adapter and its interface. The constants form the basis for instantiating and
returning of respective adapters by the factory.

The respective adapter constant and corresponding usage in the getAdapter method of
the adapter factory class is shown in a sample below.

… Adapter Factory Method …
public IEventProcessingAdapter getAdapter(String adapter, NameValuePair[]
nameValues) {
EventProcessingAdapter eventProcessingAdapter = null;
If (adapter.equalsIgnoreCase(EventProcessingAdapterConstant.MODULE_TO_ACTIVITY)) {
eventProcessingAdapter = new EventProcessingAdapter();
}
return eventProcessingAdapter;
}

The adapter implementation (that is, EventProcessingAdapter) can have implementation
of the methods defined in the adapter interface it implements. This implementation is
typically delegated calls to services of the module which is invoked by the consuming
module. For example, the EventProcessingAdapter can implement the method
processActivityEvents().

public void processActivityEvents(ApplicationContext applicationContext,
HashMap<String, String> activityMap) throws FatalException {
EventProcessorApplicationService eventApplicationService =
new EventProcessorApplicationService();
eventApplicationService.processActivityEvents(AdapterContextHelper.fetchSessionCon
text(), key, activityDataId);
}

5.2.2 Example 2 – DispatchAdapter
Similar to the implementation of EventProcessingAdapter, an adapter implementation is
provided by product for dispatch of an SMS alert. This adapter will always get
customized during implementation depending on the SMS gateway used by the
customer at their end.

The code snippet to invoke a method dispatchSMS() in alerts module by using the
adapter interface is depicted below.

… Constants definition …
public static final String EVENT_PROCESSING_DISPATCH = "EVENT_PROCESSING_
DISPATCH";
public static final String EP_TO_DISPATCH = "EpToDispatchAdapter";

… Adapter usage …
com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =

Customizing Existing Adapters

5-6 Oracle Banking Platform Extensibility Guide

AdapterFactoryConfigurator.getInstance().getAdapterFactory(ModuleConstant. EVENT_
PROCESSING_DISPATCH);

adapter = (IDispatchAdapter) adapterFactory.getAdapter
(EventProcessingAdapterConstant.EP_TO_DISPATCH);
adapter.dispatchSMS();

An entry in AdapterFactories.properties corresponding to the DispatchAdapterFactory
would look as below. This entry specifies the adapter factory class corresponding to
the above constant which should be instantiated and returned.

EVENT_PROCESSING_DISPATCH=com.ofss.fc.app.adapter.impl.ep.DispatchAdapterFactory

The adapter DispatchAdapter is used in the alerts module to dispatch a message to an
SMS destination endpoint. It has a method called dispatchSMS(…) and the default
implementation is currently to write the SMS text generated as part of alert processing
into a file called SMS.txt.

public boolean dispatchSMS(String recipientId, String dispatchMessage) throws
FatalException {
return writeToFile(recipientId, dispatchMessage);
}

The customization developer can override this method by supplying a customized
implementation of the adapter. Such custom implementation of the dispatchSMS(…)
method invokes the APIs provided by the gateway client. A sample implementation
which overrides the default implementation of dispatchSMS could look like the one
below:

public boolean dispatchSMS(String recipientId, String dispatchMessage) throws
FatalException {
NewGatewayAPI newGateway = new NewGatewayAPI();
newGateway.sendMessage(recipientId,dispatchMessage);
}

5.3 Customizing Existing Adapters
If an added functionality or replacement functionality is required for an existing
adapter or existing method in an adapter, the customization developer has to develop
a new adapter and corresponding adapter factory and override the method in a new
custom adapter class. The custom adapter would have to override and implement the
methods which need changes.

5.3.1 Custom Adapter Example 1 – DispatchAdapter
Depending on the client the SMS gateway they use and thus the corresponding
interface to communicate with the gateway will differ. Also, OBP by default does not
support interfacing with any SMS gateway. Hence, customization of DispatchAdapter
is essential. The following steps can be followed for implementation of a custom
DispatchAdapter.

Develop a CustomDispatchAdapter and CustomDispatchAdapterFactory. As a guideline,
the custom adapter should extend the existing adapter and override the methods
which need to be replaced with new functionality. Given below are examples of
customizing the adapters which are detailed above.

Customizing Existing Adapters

OBP Application Adapters 5-7

The custom adapter, adapter factory and corresponding constant are depicted as a
sample below:

… CustomDispatchAdapterFactory Method …
public IDispatchAdapter getAdapter(String adapter, NameValuePair[] nameValues) {
IDispatchAdapter adapter = null;
If (adapter.equalsIgnoreCase(EventProcessingAdapterConstant.EP_TO_DISPATCH)) {
adapter = new CustomDispatchAdapter();
}
return adapter;
}

The custom adapter implementation (that is, CustomDispatchAdapter) has the
implementation of the methods defined in the adapter interface it implements. For
example, the CustomDispatchAdapter would implement the method dispatchSMS() to
reflect the desired functionality.

The entry in AdapterFactories.properties corresponding to the DispatchAdapterFactory can
be modified to instantiate and return the CustomDispatchAdapterFactory. The same is
shown below.

Original entry
EVENT_PROCESSING_DISPATCH=com.ofss.fc.app.adapter.impl.ep.DispatchAdapterFactory
Changed entry
EVENT_PROCESSING_
DISPATCH=com.ofss.fc.app.adapter.impl.ep.CustomDispatchAdapterFactory

This changed entry specifies the custom adapter factory class corresponding to the
constant which is referred to in the product. The new entry shall ensure that the
AbstractFactory instantiates and returns an instance of CustomDispatchAdapterFactory
instead of the original DispatchAdapterFactory supplied with product.

5.3.2 Custom Adapter Example 2 – PartyKYCCheckAdapter
OBP ships an adapter implementation for KYC check of a party. The adapter
implements to the interface shown below. The interface method
performOnlineKYCCheck can be overridden by the customization developer while
supplying the actual implementation of the desired functionality.

public interface IPartyKYCCheckAdapter {
@External(name = "KYC", info = "Perform Online KYC Check")
public abstract KYCHistoryDTO performOnlineKYCCheck(KYCHistoryDTO kycCheckDTO)
throws FatalException;
}

This adapter is integrated in product and the default implementation of the KYC check
returns a successful KYC check as shown below. This is depicted in the code snippets
below.

Customizing Existing Adapters

5-8 Oracle Banking Platform Extensibility Guide

Figure 5–4 Party KYC Status Check Adapter Interface

Figure 5–5 Default Implementation of IPartyKYCCheckAdapter Interface

… PartyKYCCheckAdapter performOnlineKYCCheck Method …
public KYCHistoryDTO performOnlineKYCCheck(KYCHistoryDTO kycCheckDTO) throws
FatalException {
kycCheckDTO.getAutomaticKYCDetails().setKycStatus(KYCStatus.CONFIRMED);
kycCheckDTO.getAutomaticKYCDetails().setKycProcessStage(KYCProcessStage.Complete);
kycCheckDTO.getAutomaticKYCDetails().setKycComments("KYC Status maintained by
Party");
…
kycCheckDTO.getAutomaticKYCDetails().setKycDate(postingDate);
return kycCheckDTO;
}

In actual product implemented in production at the customer site, this is replaced with
an online KYC status check against a third-party system or the appropriate KYC

Customizing Existing Adapters

OBP Application Adapters 5-9

agency external system interface. Hence, this would always be a customization point
during an implementation.

Depending on the client the KYC system uses, the corresponding interface to
communicate will differ. Hence, customization of the party KYC status check adapter
implementation is essential. The following steps would have to be followed for
implementation of a custom PartyKYCStatusCheckAdapter.

The implementation of getAdapter method of KYC adapter factory with mocking
support is given in the sample below for reference.

Figure 5–6 KYC Adapter Factory with Mocking Support

… Constants definition …
public static final String PARTY_KYC_ADAPTER_FACTORY = "PARTY_KYC_ADAPTER_
FACTORY";
public static final String PARTY_KYC_ADAPTER = "PartyKYCCheckAdapter";
… PartyKYCStatusCheckAdapterFactory getAdapter Method …
if (AdapterConstants.PARTY_KYC_ADAPTER.equals(adapter)) {
if (!isMockEnabled) {
return new PartyKYCCheckAdapter();
 else {
// 1. Creation of Mockery Object
Mockery context = new Mockery();
final IPartyKYCCheckAdapter mockPartyKYCCheckAdapter =
context.mock(IPartyKYCCheckAdapter.class);
try {
context.checking(new Expectations() {
{
allowing(mockPartyKYCCheckAdapter).performOnlineKYCCheck(with(any(KYCHistoryDTO.cl
ass)));
final KYCHistoryDTO kycCheckDTO = new KYCHistoryDTO();
KYCDetailsDTO automaticKYCDetails = new KYCDetailsDTO();
automaticKYCDetails.setKycStatus(KYCStatus.CONFIRMED);
automaticKYCDetails.setKycProcessStage(KYCProcessStage.Complete);
automaticKYCDetails.setKycComments("KYC Status maintained by Party");
String bankCode = (String) FCRThreadAttribute.get(FCRThreadAttribute.USER_BANK);
Date postingDate = new CoreService().fetchBankDates(bankCode).getCurrentDate();

Customizing Existing Adapters

5-10 Oracle Banking Platform Extensibility Guide

automaticKYCDetails.setKycDate(postingDate);
kycCheckDTO.setAutomaticKYCDetails(automaticKYCDetails);
will(returnValue(kycCheckDTO));
}
);
} catch (Exception e) {
throw new
 MockAdapterException(InfraErrorConstants.MOCK_METHOD_NOT_CONFGD,
e, PartyKYCCheckAdapterFactory.class.getName());
}
return mockPartyKYCCheckAdapter;
}
}

To override the default implementation of the KYC check, the customization developer
has to implement a custom adapter and its corresponding adapter factory. Assume the
same are named as CustomPartyKYCStatusCheckAdapter which conforms to the
interface of the product KYC check adapter and
CustomPartyKYCStatusCheckAdapterFactory which would return an instance of the
custom adapter. As a guideline, the custom adapter should extend the existing adapter
and override the methods which need to be replaced with new functionality.

Therefore, CustomPartyKYCStatusCheckAdapter can override and provide an actual
implementation of the methods defined in the default product adapter interface. For
example, the adapter implements the method performOnlineKYCCheck() to reflect the
desired functionality.

The entry in AdapterFactories.properties corresponding to the
PartyKYCCheckAdapterFactory can to be modified to instantiate and return the
CustomPartyKYCCheckAdapterFactory. The same is shown below.

Original entry
PARTY_KYC_ADAPTER_
FACTORY=com.ofss.fc.app.adapter.impl.party.PartyKYCCheckAdapterFactory
Changed entry
PARTY_KYC_ADAPTER_FACTORY=
com.ofss.fc.app.adapter.impl.party.CustomPartyKYCCheckAdapterFactory

This changed entry specifies the custom adapter factory class corresponding to the
constant which is referred to in the product. The new entry shall ensure that the
AbstractFactory instantiates and returns an instance of
CustomPartyKYCCheckAdapterFactory instead of the original
PartyKYCCheckAdapterFactory supplied by the product.

6

User Defined Fields 6-1

6User Defined Fields

OBP application is shipped with the additional functionality where the additional data
items can be added for certain objects/entities. These additional attributes needs not
be part of the core product but could be the client's requirement.

For this provision of adding the user defined fields, the application is provided with
the UDF task-flow fields on a screen, the UDF are useful for capturing and displaying
additional data. However, it is difficult to use this additional data in the business logic.
Hence, UDF are ideal for capturing data and reporting purposes. When using this way
for additional capture, simple changes on client side and minimal changes (or no
changes) on host side are required.

The following sections describe the changes to be done to enable the UDF for a
particular screen.

6.1 Enabling UDF for a Particular Screen
This section provides a detailed explanation on enabling UDF for a particular screen.

6.1.1 UDF Metadata
Metadata for UDF are maintained in a table FLX_MD_SCREEN_BINDING. There is a
facility to generate this data for the screens using a utility, but considering the
complexity involved, in some cases the utility fails to generate the actual data and the
metadata needs to be entered manually.

The Utility for assisting generation of the metadata are:

■ DomainObjectParser:

This utility gets the data of the middleware entities and creates a mapping
between the DTO and the Entity fields and populates the same in a data source.

■ ScreenComponentDTOMapping:

This utility uses the data generated above, and by parsing the UI related files
around the area where the VO Object is getting set from the DTO, and tries to
arrive at the mapping between the vo attribute and the associated entity attribute.

The accuracy of this utility process isn't 100 percent as it depends directly on the
different flavours/fashion of the code written and also on the way the screen has
been designed. As 100 percent accuracy is not achievable using this, the generated
data needs to be verified and corrected wherever necessary.

In case, the required data does not come out of this utility, the same need to be
manually supplied in the table.

Enabling UDF for a Particular Screen

6-2 Oracle Banking Platform Extensibility Guide

The above mentioned utility populates FLX_MD_SCREEN_BINDING, however, as
there would be quite some cases where the utility will not supply the values when run,
currently the UDF processing logic is based on another table with the same structure,
which is FLX_UD_SCREEN_BINDING. The data in this table will be checked in as
seed data.

The columns in this table are explained as follows:

Figure 6–1 UDF Metadata

Table 6–1 FLX_UD_SCREEN_BINDING

S.No Column Name Explanation

1 TASK_CODE This is the task code of the screen.

2 JSFF_PATH This is the path for the jsff relative to the root folder.

3 BINDING_CTX There is a row in this table for every relevant UI attribute. Among these rows only the
key fields are of interest in the case of UDF. This shows the page definition where this
field figures. for example, com_ofss_fc_ui_taskflows_
priceDefinitionMaintenancePageDef.

And if the field happens to be inside an inner task flow, then it will be a concatenation
of the wrapper jsff pagedef with the inner task flow definition id and then the inner
task flow definition pageDef. (as given below).

com_ofss_fc_ui_view_taxation_taxWaiverPageDef#partyDetailsTaskFlowDefn1#com_
ofss_fc_ui_taskflows_partyDetailsPageDef.

4 VO_ITERATOR The Iterator name for the attribute.

5 VO_
ATTRIBUTE

The UI attribute name. This should be the attribute name inside the vo.

6 ENTITY_FIELD This is the fully qualified entity name for the corresponding Entity.

7 PARENT_
ENTITY

If there are multiple entities mapped to the screen, then one of the entities will be the
parent entity, and the same needs to be marked as 'Y'.

Enabling UDF for a Particular Screen

User Defined Fields 6-3

6.1.2 Seed Data for the Task Codes
The UDF linkage to different services is done through the screen task flow codes.

The Task Flow code and a meaningful description need to be populated in FLX_UD_
AVLBL_TASK_CODES table.

Task Code LOV in the UDF Linkage screen shows the values from this table, in order
to attach the different UDF codes to this.

6.1.3 Screen Changes for Incorporating UDF
The following changes should be taken care of to incorporate UDF functionality to a
screen.

Changes to the UI/Middleware
There are no changes to be done to the UI/Middleware to enable UDF, except in a few
special cases.

In case of a transaction screen, the screen type will be taken as input by default. If a
screen happens to be an enquiry screen, then the parameter ("TransactionScreenType")
should be passed accordingly. There are some other special cases which are explained
in a subsequent section.

Changes to the Middleware
The design is in such a way that a transaction service saved will use the Transaction
Reference number (SessionContext.internalReferenceNumber) for saving the UDF
Details. This has been done because it will be difficult to link the transaction services
to a single Entity. A Transaction spans multiple Entities.

Typically a Maintenance Service (domain layer) will extend
"MaintenanceDomainService". Hence, the code has been put inside create(),update()
and merge() to extract the key fields from the Entity instance using reflection.

MaintenanceDomainService. extractKeyFromDomainObject(AbstractDomainObject)

The above method does the following:

1. Take the data from flx_md_key_fields for the Entity and extract the Key values
from the entity instance. (keyvalue1#keyvalue2#keyvalue3)

2. Form the key attributes in a similar fashion (keyattr1#keyattr2#keyattr3)

3. Take the fully qualified Entity name from the entity passed and store the same.

Finally the data is stored into the FCRThreadAttribute as shown below:

Figure 6–2 Data Stored into the FCRThreadAttribute

When the UDF service is called to persist the UDF data, the following checks happen:

Control Flow for UDF

6-4 Oracle Banking Platform Extensibility Guide

1. If the UDFDTO contains the key in it, then it is taken to save the UDF.

2. If not, the FCRThreadAttribute is accessed and the key is taken from there.

3. If step#2 also does not yield the key, then it saves with the internalReferenceNo
from SessionContext. Transaction Services typically should not extend
"MaintenanceDomainService", and hence will fall under this option to get the key.

6.1.4 Linking of UDF to a Screen (Taskflow Code)
UDF can be linked to a particular task flow code in three simple steps.

1. Create the Required User Defined Fields using the UserDefinedFields Definition
Screen (UDF01).

2. Link the Fields to the TaskFlow Code using the User Defined Fields Linkage
Screen (UDF02).

 (Optional) If there is a requirement to use the Associated UDF functionality, Link the
Associated UDF's in this screen (UDF03). If the Associated UDF's are not required, the
steps 1 and 2 will suffice.

6.2 Control Flow for UDF
This section describes the control flow of UDF.

6.2.1 Initial Screen Load
UDF task flow has been put on the template (maintenance and transaction) and it will
be enabled for the screens using these templates, with an exception of a few because of
the way the screen and/or service has been done.

When the screen loads the template page, Definition is initialized, and as a part of it
the UDF region is initialized.

When the UDF region is initialized, the ’LinkedUDFsBean’ is initialized, and from the
constructor of which, the LinkedUDFsHelper is initialized.

As part of the helper initialization, UDF metadata is fetched, UDF VO is initialized and
the related UDF fields (the ones linked to the task code) are shown on the screen.

6.2.2 Extracting UDF Values on Submission
The following steps are involved in extracting UDF values on Submission:

Step 1
Appx Layer is enabled for the Services that need to enable UDF. Enabling the appx for
the service can be done as follows.

Step 2
From the First Layer (Proxy Façade), the data details for the UDF are extracted, with a
call to com.ofss.fc.ui.core.adfhelper.ADFProxyLayerHelper.

Step 3
The data thus obtained into the UDF DTO is passed to the subsequent layer json client
till the Service Spi, if the host application layer is APPX.

Control Flow for UDF

User Defined Fields 6-5

Figure 6–3 LinkedUDFDTO

Step 4
LinkedUDFsRegionHelper.getLinkedUDFsHelper() is get the instance of the
LinkedUDFsHelper from the respective container, using which it the UDF DTO can be
extracted.

Figure 6–4 Extracting UDF DTO using instance of the LinkedUDFsHelper

Step 5
From the ServiceSpi, the call to the actual service is made along with a call to the UDF
Service.

A new property will be available in the UIConfig.properties. This is being added to get
around the circular dependency which could otherwise come into existence.

Figure 6–5 UIConfig.properties

Package Level Interactions
The following diagram presents the package level interaction for the Extraction of
UDF Data:

Control Flow for UDF

6-6 Oracle Banking Platform Extensibility Guide

Figure 6–6 Package Level Interactions

Sequence Diagram
Following is the Sequence Diagram for UDF DTO Extraction.

Control Flow for UDF

User Defined Fields 6-7

Figure 6–7 Sequence Diagram for UDF DTO

6.2.3 Handling the Fetch of UDF Values
UDF Values linked to a key in the screen is done through a call in the Proxy layer to
fetch and hence render the values on to the screen.

Package Level Interactions
The following figure explains the package level interactions.

Control Flow for UDF

6-8 Oracle Banking Platform Extensibility Guide

Figure 6–8 Package Level Interactions

Sequence Diagram
The following sequence diagram explains the code flow:

Control Flow for UDF

User Defined Fields 6-9

Figure 6–9 Sequence Diagram

The fetch is dependent on the fact that the Key values are populated on the screen
(whether Visible on the screen or not), and the attribute name as well as the VO
Iterator name and PageDef name is part of the Seed Data.

6.2.4 UDF Enabling Special Cases
Because of the screen/service design, it is possible that some of the cases will need to
be handled differently. These cases revolve around either the extraction of key values
in the middleware for any service, or about obtaining the key (with which the UDF
had been saved for the current task code (record)).

 The cases as identified now are provided below:

Fetch
During fetch of the UDF, there could be situations due to which the key cannot be
extracted from the screen, using the metadata provided in the FLX_UD_SCREEN_
BINDING table:

■ In the case of a composite Key if one of the attributes involved in the key is not
available in the UI View object. The cases in which this would happen are
different.

– An ’if’ condition based on which a value is set into the DTO at the time of save
from a Enum or a constant, where as the screen displays the value as
something else.

– One of the key attributes is taken from the session context in the middleware,
just before the fetch happens, and that attribute is not available anywhere in
the UI.

Solution:

The above two cases needs to be handled by raising an event from the screen, after
setting the key value into TaskFlow.udf_key. Event Consumer class will consume
this event and make a call to the middleware with this key to fetch the
LinkedUDFDTO.

Control Flow for UDF

6-10 Oracle Banking Platform Extensibility Guide

■ In some cases, the screen is designed to list the multiple records maintained from
that screen in a single grid. In this case there are multiple keys (record) available
on the screen at the same time

Solution:

Same as the above. Raising an event from the screen during the process of fetch,
after setting the key value into TaskFlow.udf_key. Event Consumer class will
consume this event and make a call to the middleware with this key to fetch the
LinkedUDFDTO.

Save
During Extraction of the key in the middleware, there could be the following cases:

■ A Maintenance Service calling multiple services within itself. In this case, there are
multiple entries into MaintenanceDomainService, and in all cases the code to
extract they key from the entity will be executed. Now, we don't know the right
entity from which the key needs to be extracted.

Solution:

A new mapping table (new metadata) has been put in place to maintain a
mapping between Fully Qualified (FQ) Spi name and the Fully Qualified
EntityName. When the call enters the key extraction method it will check if there is
an entry in this table, and if yes, it will process only if it comes in with the right
Entity. If there is no entry in this table, then it takes the key details from the first
Entry into the key extraction method and stores it against the
FCRThreadAttribute.udf_Key. Subsequently, there is a check to see if it is already
available, and skip if yes.

6.2.5 Tips for Trouble Shooting
UDF panel is not appearing on the screen:

If the UDF panel is not appearing on the screen, you can perform the following checks:

■ Check correct key entry is there in FLX_UD_LINKED_UDF, the taskcode linkage
table.

■ Check if the table (FLX_UD_SCREEN_BINDING) has rows for the task code. The
rows in here are required only if it is maintenance template.

■ If the screen is using transaction template, check if the TransactionType is input or
inquiry.

■ If it is input, then check if there are UDF's linked to the taskcode.

■ If it is inquiry, then see if the event is getting raised from the grid. If the event is
there, then on the grid task flow, check if MultiTabCtx is being passed as a
parameter into this task flow. The event is raised after setting the UDF key is set
into the respective attribute inside the TaskFlow.

■ Check if the page has template binding in its page definition.

UDF field values are not persisting in to DB:

If the UDF field values are not persisting in to DB, you can perform the following
checks:

■ Check if Appx is enabled in HostApplicationLayer.properties

■ Debug inside the extractUDF method of the ADFProxyLayerHelper, it extracts
UDF fields from UDF view object, creates linkedUDFDTO and returns the same to

Limitations and Special Cases

User Defined Fields 6-11

the proxy layer. This can be checked at the service Spi level if the UDFDTO is
coming in with values.

■ The case could also be that, the UDF values are saved with the user reference
number, that is, in the case where the key extraction from
MaintenanceDomainService has not happened fine. In this case, even though the
UDF is persisted, it does not look like it has, and as a result this would seem like a
persistence issue.

UDF field values are not populated in fetch:

If the UDF field values are not populated in fetch:, you can perform the following
checks:

■ Check if the screen has some special handling to populate the UDF by raising
events.

■ To raise the event, the keyvalue for the screen needs to be set in "TaskFlow"
instance, and this is possible only if MultiTabContext is available in the
pageflowscope where the event is getting raised.

■ If not, check the call from the Proxyfacade, if the call has to AbstractProxyFacade.
populateUDFData(SessionContext sessionContext)

■ Check if the screen is a transaction template screen, and it happens to be a pure
enquiry screen. If yes, the parameter "transactionScreenType" needs to be passed
from the taskcode jsff appropriately.

UDF Data getting saved with the wrong key:

If the UDF data is getting saved with the wrong key, you can perform the following
checks:

■ If the metadata related to an entity is not available in FLX_MD_KEY_FIELDS, the
actual maintenance service key cannot be used to save the UDF, and it by default
gets saved with the SessionContext.internalReferenceNumber, and make it look
like the UDF values were not saved.

■ Similarly, in case of a transaction service, the design is to save the UDF with the
transaction reference number (SessionContext.internalReferenceNumber).
However, if the service (or one of the component Services happens to extend
"MaintenanceDomainService"), the key will be extracted from the entity that is
passed into this. This can be handled by passing the screentype parameter
properly.

6.3 Limitations and Special Cases
Following is the list of the limitations and special cases:

■ There are multiple records getting maintained at one time, that is during one save.
There is only one instance of the UDFDTO available in the service signatures for
the App services.

■ UDF Panel has been added to the template. Currently, it supports Maintenance
and Transaction template. UDF cannot be enabled for Dashboard type of screen
where there is a collage of information fed by different services, as it is UI
(taskcode) dependent rendering for the UDF. This will require coding specifically
to be done on the screen where it needs to be rendered.

■ Extraction of the UDF Key is dependent on the metadata generated on the Entities,
and using a linkage that needs to be maintained with the UI (Vo) attributes and

Limitations and Special Cases

6-12 Oracle Banking Platform Extensibility Guide

the service attributes. If the UI attributes or Entity attributes change, the metadata
has to be brought in sync.

■ Fetching of UDF requires the task code to be supplied along with the Key value,
currently though the domain entity name is also captured.

■ If there is a grid on the screen, the call to render the UDF for the different keys on
the grid needs to happen through an Event raising.

■ Multiple fetch Calls might happen from the UI. UI might not be able to
differentiate between the main fetch calls and the others when it comes to fetching
the UDF values.

7

ADF Screen Customizations 7-1

7ADF Screen Customizations

OBP provides the extensibility to an application for customizing certain additional
requirements of a client. However, since these additional requirements differ from
client to client, and the base application functionality remains the same, the code to
handle the additional requirements should be kept separate from the code of the base
application. For this purpose, Seeded Customizations (built on the Oracle Metadata
Services framework) can be used to customize an application.

7.1 Seeded Customization Concepts
When designing seeded customizations for an application, one or more customization
layers need to be specified. A customization layer is used to hold a set of
customizations. A customization layer supports one or more customization layer value
which specifies which set of customizations to apply at runtime.

Custom Application View can be represented as follows:

Figure 7–1 Customization Application View

Oracle JDeveloper 11g includes a special role for designing customizations for each
customization layer and layer value called the Customization Developer Role.

The following section explains the details about the Oracle JDeveloper customization
mode as well as customizing and extending of the ADF application artifact. The
detailed documentation for customizing and extending ADF Application Artifacts is
also available at the Oracle website:

Customization Layer

7-2 Oracle Banking Platform Extensibility Guide

http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_
busobjedit.htm

7.2 Customization Layer
To customize an application, you must specify the customization layers and their
values in the CustomizationLayerValues.xml file, so that they are recognized by
JDeveloper.

For example, you can create a customization layer with the name option and values
demo and another bank name.

To create the customization layer, follow these steps:

1. From the main menu, choose the File -> open option. Locate and open the file

2. CustomizationLayerValues.xml which is found in the <JDEVELOPER_
HOME>/jdeveloper/jdev directory. In the XML editor, add the entry for a new
customization layer and values as shown in the following image.

Figure 7–2 CustomizationLayerValues.xml

3. Save and close the file.

7.3 Customization Class
Before customizing an application, a customization class needs to be created. This class
represents the interface that the Oracle Metadata Services framework uses to identify the
customization layer that should be applied to the application's base metadata.

http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_busobjedit.htm
http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_busobjedit.htm

Customization Class

ADF Screen Customizations 7-3

To create a customization class, follow these steps:

1. From the main menu, choose File -> New.

2. Create a generic project and give a name (com.ofss.fc.demo.ui.OptionCC) to the
project.

3. Go to Project Properties for this project and add the required MDS libraries in the
classpath of the project.

Figure 7–3 Customization Class

4. Create the customization class in this project. The customization class must extend
the oracle.mds.cust.CustomizationClass abstract class.

Following are the abstract methods of the CustomizationClass:

■ getCacheHint() - This method will return the information about whether the
customization layer is applicable to all users, a set of users, a specific HTTP
request or a single user.

■ getName() - This method will return the name of the customization layer.

■ getValue() - This method will return the customization layer value at runtime.

The screenshot below depicts an implementation for the methods:

Enabling Application for Seeded Customization

7-4 Oracle Banking Platform Extensibility Guide

Figure 7–4 Implementation for the abstract methods of CustomizationClass

5. Build this class and deploy the project as a JAR file
(com.ofss.fc.demo.ui.OptionCC.jar). This JAR file should only contain the
customization class.

6. Place this JAR file in the location <JDEVELOPER_
HOME>/jdeveloper/jdev/lib/patches so that the customization class is available
in the classpath of JDeveloper.

7.4 Enabling Application for Seeded Customization
Seeded customization of an application is the process of taking a generalized
application and making modifications to suit the needs of a particular group. The
generalized application first needs to be enabled for seeded customization before any
customizations can be done on the application.

To enable seeded customization for the application, follow these steps:

1. Go to the Project Properties of the application's project.

2. In the ADF Views section, check the Enable Seeded Customizations option.

Enabling Application for Seeded Customization

ADF Screen Customizations 7-5

Figure 7–5 Enable Seeded Customizations

3. In the Libraries and Classpath section, add the previously deployed
com.ofss.fc.demo.ui.OptionCC.jar which contains the customization class.

Figure 7–6 Adding com.ofss.fc.demo.ui.OptionCC.jar

4. In the Application Resources tab, open the adf-config.xml present in the
Descriptors/ADF META-INF folder. In the list of Customization Classes, remove

Enabling Application for Seeded Customization

7-6 Oracle Banking Platform Extensibility Guide

all the entries and add the com.ofss.fc.demo.ui.OptionCC.OptionCC class to this
list.

Figure 7–7 Adding com.ofss.fc.demo.ui.OptionCC.OptionCC

Figure 7–8 Adf-config.xml

Customization Role and Context

ADF Screen Customizations 7-7

7.5 Customization Project
After creating the Customization Layer and the Customization Class and enabling the
application for Seeded Customizations, the next step is to create a project which will
hold the customizations for the application.

To create the customization project, follow these steps:

1. From the main menu, choose File -> New. Create a new Web Project with the
following technologies:

■ ADF Business Components

■ Java

■ JSF

■ JSP and Servlets

2. Go to the Project Properties of the project and in the classpath of the project, add
the following jars:

■ Customization class JAR (com.ofss.fc.demo.ui.OptionCC.jar)

■ The project JAR which contains the screen / component to be customized. For
example, if you want to customize the Party -> Contact Information -> Contact
Point screen, the related project JAR is com.ofss.fc.ui.view.party.jar.

■ All the dependent JARS / libraries for the project JAR.

■ Enable this project for Seeded Customizations.

7.6 Customization Role and Context
Oracle JDeveloper 11g includes a specific role called Customization Developer Role
that is used for editing seeded customizations.

To edit customizations to an application, you will need to switch JDeveloper to that
role, follow these steps:

1. In Tools -> Preferences -> Roles, select the Customization Developer Role.

Customization Role and Context

7-8 Oracle Banking Platform Extensibility Guide

Figure 7–9 Customization Developer

2. Select the "Always prompt for role selection on start up" option.

Customization Role and Context

ADF Screen Customizations 7-9

Figure 7–10 Selecting Always Prompt for Role Selection on Start Up

3. On restarting JDeveloper, you will be prompted for role selection. Select
Customization Developer Role.

Once Oracle JDeveloper 11g has restarted, ensure that the application to be
customized is selected in the Application Navigator and have a look around the
integrated development environment. You will notice a few changes from the
Default Role. The first change you might notice is that files (such as Java classes),
that are not customizable, are now read only. The Customization Developer Role
can only be used for editing seeded customizations. Anything that is not related to
seeded customizations will be disabled. The second major difference you might
notice is the MDS - Customization Context window that is displayed.

4. Check the Edit with following Customization Context option.

You will see a list of customization layer name and customization layer values
which were defined in the CustomizationLayerValues.xml file.

5. Select the Customization Context for which, the customizations you edit should be
applicable.

Customization Examples

7-10 Oracle Banking Platform Extensibility Guide

Figure 7–11 View Customization Context

All the customizations which are done to the application are now stored for the
selected Customization Context.

7.7 Customization Examples
This section describes the customization examples.

7.7.1 Adding a Validator to Input Text Component
In this first example of customization, we will be adding a Validator to an Input Text
Component present in a screen.

Use Case Description: The Party -> Contact Information -> Contact Point screen is
used to store the various contact point details for a party. In the Contact Point Details
tab, the user can select a Contact Point Type. For certain types, the Telephone Details
tab is enabled in which the user can enter the telephone details. A custom component
numericCode is used for getting the user's input for Telephone Number. We will be
adding a Validator to this component which will validate the user's input against a
regular expression.

Customization Examples

ADF Screen Customizations 7-11

Figure 7–12 Contact Point

To create the customization as mentioned in this use case, follow these steps:

Step 1 Create Customization Project
1. Create a project (com.ofss.fc.demo.ui.view.party) to hold the customization, as

mentioned in the section Customization Project.

2. Add the required libraries and JARS along with JAR which contains the above
screen (com.ofss.fc.ui.view.party.jar).

3. Enable the project for seeded customizations.

Step 2 Create Validator Class
All the files which are not customizable (for example - Java Classes), are read only in the
Customization Developer Role. Hence, you have to create the Validator Class in the
Default Role itself. Create the class with following features:

1. To get a handle on the numericCode component of the Telephone Number, include a
private member in this class of type ContactPoint which is the backing bean for this
screen.

2. Add a validator method with the following signature - public void methodName
(FacesContext facesContext, UIComponent uiComponent, Object object).

Customization Examples

7-12 Oracle Banking Platform Extensibility Guide

Figure 7–13 DemoValidator.java

Step 3 Create Managed Bean
After creating the validator class, you have to switch to the Customization Developer
Role.

1. Select the required customization context (for example - demo).

2. Open the customization project's adfc-config.xml which is present in the WEB-INF
folder.

3. In the Managed Beans tab, add the validator class as a managed bean with request
scope as follows.

Figure 7–14 Managed Beans

Customization Examples

ADF Screen Customizations 7-13

When you save the changes, JDeveloper creates a customization XML to store the
changes. For the above change, JDeveloper creates the XML adfc-config.xml in the
WEB-INF/mdssys/cust/option/demo folder where option is the Customization Layer
Name and demo is the Customization Layer Value.

Figure 7–15 Creating Managed Bean - Customization XML

Step 4 Open Screen JSFF
After adding the Validator class as a managed bean, open the JSFF for the screen and
perform the below mentioned steps:

1. In the Application Navigator, open the Navigator Display Options for Projects tab.

2. Select the Show Libraries option.

Figure 7–16 Opening JSFF Screen - Show Libraries

3. In the navigator tree, locate the JAR that contains the screen
(com.ofss.fc.ui.view.party.jar).

4. Inside this JAR, locate the screen JSFF
(com.ofss.fc.ui.view.party.contactPoint.form.contactPoint.jsff) and open it.

You will notice that you cannot modify this JSFF in the editor.

5. Locate the <fc:numericCode> component for the Telephone Number.

Customization Examples

7-14 Oracle Banking Platform Extensibility Guide

Figure 7–17 Opening JSFF Screen - contactPoint.Jsff

Step 5 Bind Validator to Component
1. Select the aforementioned component and open the Property Inspector tab.

2. For the property Validator, select the Method Expression Builder.

3. In the pop-up, locate the Validator Class Method under the ADF Managed Beans.

When you select this method and save, the component is bound to the validator.

Customization Examples

ADF Screen Customizations 7-15

Figure 7–18 Bind Validator to Component - Validator Property

Figure 7–19 Bind Validator to Component - telNumberValidator

4. When you save the changes, JDeveloper creates a customization XML to store the
changes.

For the above change, JDeveloper creates the XML contactPoint.jsff.xml in the
com/ofss/fc/ui/view/party/contactPoint/cust/option/demo folder where option is the
Customization Layer Name and demo is the Customization Layer Value.

Customization Examples

7-16 Oracle Banking Platform Extensibility Guide

Figure 7–20 Bind Validator to Component - contactPoint.jsff.xml

Step 6 Deploy Customization Project
After finishing the customization changes, exit the Customization Developer Role and
start JDeveloper in Default Role. Deploy the customization project as an ADF Library
JAR (com.ofss.fc.demo.ui.view.party.jar).

1. Go to the Project Properties of the main application project and in the Libraries
and Classpath, add the following JARS:

1. Customization Project JAR (com.ofss.fc.demo.ui.view.party.jar)

2. Customization Class JAR (com.ofss.fc.demo.ui.OptionCC.jar)

3. All dependency libraries and JARS for the project.

2. Start the application and navigate to the Party -> Contact Information -> Contact
Point screen.

3. Input a Party Id.

4. Select a Contact Point Type and provide input in the Telephone Number input box.

If the input is invalid as per the Validator Class Method, an error message is
displayed to the user.

Customization Examples

ADF Screen Customizations 7-17

Figure 7–21 Contact Point screen

7.7.2 Adding a UI Table Component to the Screen
In this second example of customization, we will be adding a table UI Component,
which displays data to a screen.

Use Case Description: The Advanced Search screen is used to display the related
accounts and their details for a party. The Party -> On-Boarding -> Related Party screen
displays the related parties for a party. We will be adding the table UI component used
for displaying the related parties on the Related Party screen to the Advanced Search
screen and populate data in this table on search and selection of a party.

Customization Examples

7-18 Oracle Banking Platform Extensibility Guide

Figure 7–22 Adding a UI Table Component - Party Search screen

Figure 7–23 Adding a UI Table Component - Related Party screen

To create the customization as mentioned in this use case, start JDeveloper in the
Default Role and follow these steps:

Step 1 Create Customization Project
1. As mentioned in the section Customization Project, create a project

(com.ofss.fc.demo.ui.view.party) to hold the customization.

Customization Examples

ADF Screen Customizations 7-19

2. Add the required libraries and JARS along with JAR which contains the above
screen (com.ofss.fc.ui.view.party.jar).

3. Enable the project for seeded customizations.

Step 2 Create Binding Bean Class
You will need to create a class which will contain the binding for the UI Components
which will be added to the screen during customization. Create the class with the
following features:

■ Private members for the UI Components and public accessors for the same.

■ Private member for the backing bean of the screen (PartySearchMaintenance) which
is initialized in the constructor of this class.

■ Private member for the parent UI Component of the newly added UI components
and public accessors which returns the corresponding component of the backing
bean.

Figure 7–24 Creating Binding Bean Class

Step 3 Create Event Consumer Class
You will need to create a class which contains the business logic for populating the
table UI component with the related parties’ data. The search and selection of a party
in the Advanced Search screen raises an event. By binding this event consumer class to
the party’s selection event, the business logic for populating the related party’s data
will be executed automatically on selection of a party by the user.

The original event consumer class bound to this event contains the business logic for
populating the accounts data. Since your event consumer class would be over-riding
the original binding, you will need to incorporate the original business logic for
populating the accounts data in your event consumer class.

Customization Examples

7-20 Oracle Banking Platform Extensibility Guide

Figure 7–25 Create Event Consumer Class

Step 4 Create Managed Bean
You will need to register the binding bean class as a managed bean. Open the project's
adfc-config.xml which is present in the WEB-INF folder. In the Managed Beans tab,
add the binding bean class as a managed bean with request scope as follows:

Figure 7–26 Creating Managed Bean

Step 5 Create Data Control
For the event consumer class's method to be exposed as an event handler, you will
need to create a data control for this class.

1. In the Application Navigator, right-click the event consumer Java file and create data
control.

Customization Examples

ADF Screen Customizations 7-21

2. On creation of data control, an XML file is generated for the class and a
DataControls.dcx file is generated containing the information about the data
controls present in the project.

You will be able to see the event consumer data control in the Data Controls tab.

Figure 7–27 Create Data Control

3. Restart JDeveloper in the Customization Developer Role to edit the customizations.

4. Ensure that the appropriate Customization Context is selected.

Step 6 Add View Object Binding to Page
You will need to add the view object binding to the page definition of the screen. To
open the page definition of the screen, follow these steps:

1. In the Application Navigator, open the Navigator Display Options for Projects tab
and check the Show Libraries option.

2. In the navigator tree, locate the JAR that contains the screen (
com.ofss.fc.ui.view.party.jar).

3. Inside this JAR, locate and open the page definition XML
(com.ofss.fc.ui.view.party.partySearch.pageDefn.PartySearchMaintenancePageDef.xml)

4. After opening the page definition XML, add a tree binding for the view object
(RelatedPartiesAndDetailsTableVO1) as follows:

Customization Examples

7-22 Oracle Banking Platform Extensibility Guide

Figure 7–28 Adding View Object Binding to Page Definition - Add Tree Binding

Customization Examples

ADF Screen Customizations 7-23

Figure 7–29 Adding View Object Binding to Page Definition - Update Root Data Source

5. In Root Data Source, locate the view object which is present in the
PartyAppModuleDataControl. Select the required display attributes and click OK.

Step 7 Add Method Action Binding to the Page Definition
You will need to add the method action binding for the event consumer data control to
the page definition of the screen.

1. After opening the page definition XML, add the method action binding for the
DemoPartySearchConsumer data control to the page definition as follows:

Customization Examples

7-24 Oracle Banking Platform Extensibility Guide

Figure 7–30 Page Data Binding Definition - Insert Item

2. Browse and locate the data control and click OK.

Customization Examples

ADF Screen Customizations 7-25

Figure 7–31 Page Data Binding Definition - Create Action Binding

Step 8 Edit Event Map
You will need to map the Event Producer for the party selection event to the Event
Consumer defined by you in the page definition.

1. In the Application Navigator, select the page definition XML file.

2. In the Structure panel of JDeveloper, right-click the page definition XML and select
Edit Event Map.

Customization Examples

7-26 Oracle Banking Platform Extensibility Guide

Figure 7–32 Edit Event Map

3. In the Event Map Editor panel, edit the mapping for the required event.

4. Select the newly added Event Consumer's method.

Customization Examples

ADF Screen Customizations 7-27

Figure 7–33 Event Map Editor

Step 9 Add UI Components to Screen
After making the required changes to page definition of the screen, you will need to
add the UI components to the screen JSFF. After opening the JSFF for the screen
(com.ofss.fc.ui.view.party.partySearch.PartySearchMaintenance.jsff), follow these steps:

1. Drag and drop the Panel Box, Panel Collection and Table components onto the
screen.

2. Set the required columns for the Table component.

3. Drag and drop the Output Text or Check Box components as required inside the
columns.

4. For each component, set the required attributes using the Property Inspector panel
of JDeveloper.

5. Add the binding for required components to the binding bean members.

6. Add the view object binding to the Table component.

7. Save changes made to the JSFF.

Customization Examples

7-28 Oracle Banking Platform Extensibility Guide

Figure 7–34 Add UI Components to Screen

After saving all these changes, you will notice that JDeveloper has created a
customization XML for each of the customized entities in the ADF Library
Customizations Sources folder packaged as per the corresponding base document's
package and customization context (Customization Layer Name & Customization
Layer Value). These XML's store the difference between the base and customized
entity. In our customization, you can see the following generated XML's:

■ PartySearchMaintenancePageDef.xml for the page definition customizations.

■ DataBindings.cpx.xml for the data binding (view object binding)
customizations.

■ PartySearchMaintenance.jsff.xml for the UI customization to the screen JSFF.

Customization Examples

ADF Screen Customizations 7-29

Figure 7–35 Application Navigator

Step 10 Deploy Customization Project
After finishing the customization changes, exit the Customization Developer Role and
start JDeveloper in Default Role. Deploy the customization project as an ADF Library
JAR (com.ofss.fc.demo.ui.view.party.jar).

1. Go to the Project Properties of the main application project and in the Libraries
and Classpath, add the following JARS:

■ Customization Project JAR (com.ofss.fc.demo.ui.view.party.jar)

■ Customization Class JAR (com.ofss.fc.demo.ui.OptionCC.jar)

■ All dependency libraries and JARS for the project.

2. Start the application and navigate to the Advanced Search screen.

3. Search for a party ID and select a party from the Party Search Results table.

4. On selection of a party, the Relation Details panel containing the related party’s
data is displayed.

Customization Examples

7-30 Oracle Banking Platform Extensibility Guide

Figure 7–36 Party Search

7.7.3 Adding a Date Component to a Screen
In this third example of customization, we will be adding a Date Component to an
existing screen to capture date input from the input. This input will be saved in the
database.

Use Case Description: The Party -> Contact Information -> Contact Point screen is used
to store the various contact point details for a party. In the Contact Point Details tab, the
user can select a Contact Point Type and a Contact Preference Type and provide details for
the same. We will be adding a field Expiry Date as a date component to this tab. We
will be adding a table to the database to save the user input for this field and services
for this screen will be added/modified.

Customization Examples

ADF Screen Customizations 7-31

Figure 7–37 Adding a Date Component

To create the customization as mentioned in this use case, follow these steps:

Step 1 Host Application Changes
In this use case, we need to save the input data in the database of the application, we
need to do certain modifications on the host application before creating the
customizations on the client application. Following are the changes that need to be
done to the host application.

Step 2 Create Table in Application Database
To save the input data for the Expiry Date field, create a table in the application
database. The table will also need to have the Key columns for this field and the
columns needed to store information about the record. Create appropriate primary
and foreign keys for the table as well.

Customization Examples

7-32 Oracle Banking Platform Extensibility Guide

Figure 7–38 Create Table in Application Database

After creating the table, we will need to create the domain object and service layers. To
create these entities, follow these steps:

Step 3 Create Java Project
To contain the domain object and service layer classes, create a Java Project in eclipse.
Give a title to the project (com.ofss.fc.demo.party.contactexpiry) and add the required
projects to the classpath of the project.

Figure 7–39 Create Java Project

Step 4 Create Domain Objects
We will need to create the domain objects for the newly added table. As per the
structure and package conventions of OBP, create the domain objects as follows:

Customization Examples

ADF Screen Customizations 7-33

1. Create class (com.ofss.fc.demo.domain.party.entity.contact.ContactExpiryKey) for the
key columns of the table. This class must extend the
com.ofss.fc.framework.domain.AbstractDomainObject abstract class.

2. Add the properties, getters and setters for the key columns of the table in this
class.

3. Implement the abstract methods of the superclass.

Figure 7–40 Create Domain Objects

4. Create interface (com.ofss.fc.demo.domain.party.entity.contact.IContactExpiry) for the
domain object class with getters and setters abstract methods for the Key domain
object and the field Expiry Date.

This interface must extend the interface
com.ofss.fc.framework.domain.AbstractDomainObject.

Figure 7–41 Create Interface

5. Create class (com.ofss.fc.demo.domain.party.entity.contact.ContactExpiry) for the
domain object. This class must implement the previously created interface and
extend com.ofss.fc.framework.domain.AbstractDomainObject abstract class.

6. Add the properties, getters and setters for Key object and Expiry Date field.

7. Implement the abstract methods of the superclass.

Customization Examples

7-34 Oracle Banking Platform Extensibility Guide

Figure 7–42 Create Class

8. After creating the domain objects, build the project. We will be using the OBP
development eclipse plug-in to generate the service layers.

Step 5 Set OBP Plugin Preferences
Before using the plug-in for generating service layer classes, you will need to set the
required preferences for the plug-in. In eclipse, go to Windows -> Preferences -> OBP
Development and the set the preferences as follows.

Figure 7–43 Preferences - Service Publisher

Customization Examples

ADF Screen Customizations 7-35

Figure 7–44 Preferences - WorkSpacePath

Figure 7–45 Preferences - XML/JSON Facade

Step 6 Create Application Service
You will need to generate the application service layer classes using the OBP
development plugin. Follow these steps:

1. Open the domain object class (ContactExpiry)

2. On the getter method of the Key object, add a javadoc comment @PK.

3. Right-click the editor window and from context menu that opens, choose OBP
Development -> Generate Application Service.

Customization Examples

7-36 Oracle Banking Platform Extensibility Guide

4. In the dialog that opens, select the Java project for generated classes. You can use
the project previously created by you.

Figure 7–46 ApplicationService Generator

5. Click Generate. Application Service classes will be generated in the project.

The Java source might contain some compilation errors due to syntax. Fix these errors
and build the project. The following classes should have been generated in the project.

Figure 7–47 List of Classes Generated in the Project

Customization Examples

ADF Screen Customizations 7-37

Step 7 Generate Service and Facade Layer Sources
Before generating the service and facade layer sources, you will need to modify the
Data Transfer Object (DTO). When a service call is made from the client application for
a transaction related to Contact Point, the Contact Expiry transaction for the newly
added Expiry Date field should be done in addition to the Contact Point transaction.
Hence, the DTO for this transaction should also contain the DTO for the Contact Point
transaction.

1. Open the ContactExpiryDTO class.

2. Delete the member ContactExpiryKey member and add ContactPoint member.

3. Re-factor references of the deleted member with the added member.

Figure 7–48 ContactExpiryDTO. java file

To generate the service and facade layer sources, follow these steps:

1. Open the application service class (ContactExpiryApplicationService)

2. Right-click the editor window and from the context menu that opens, choose OBP
Development -> Generate Service and Facade Layer Sources

3. In the dialog box that opens, select the Java project for the generated classes. You
can use the project previously created by you. Deselect the Overwrite Existing Files
option.

Customization Examples

7-38 Oracle Banking Platform Extensibility Guide

Figure 7–49 Generate Service and Facade Layer Sources

4. Click Finish. Service and facade layer sources will be generated in the project.

5. Certain classes might be generated twice. Delete the newly created copy of the
classes and keep the original.

6. Certain compilation errors might be present in the generated classes due to
erroneous syntax. Fix these compilation errors.

You will need to include a corresponding call to the Contact Point Application Service in
the add, update and fetch transactions of the Contact Expiry Application Service.

Open ContactExpiryApplicationServiceSpi and modify the code as shown below.

Customization Examples

ADF Screen Customizations 7-39

Figure 7–50 ContactExpiryApplicationServiceSpi.java file before Modification

Figure 7–51 ContactExpiryApplicationServiceSpi.java file after Modification

Customization Examples

7-40 Oracle Banking Platform Extensibility Guide

Figure 7–52 Contact Expiry Application Service - Contact Point Transaction

The project should contain the Java packages as shown below:

Figure 7–53 Java Packages

Customization Examples

ADF Screen Customizations 7-41

Step 8 Export Project as a JAR
You will need to export the Java project containing the domain object, application
service and facade layer source as a JAR.

1. Right-click the project and choose Export.

2. Choose JAR File in the export options.

3. Provide an export path and name (com.ofss.fc.demo.party.contactexpiry.jar) for the
JAR file and click Finish.

Figure 7–54 Export Project as a Jar

Step 9 Create Hibernate Mapping
You will need to create a hibernate mapping to map the database table to the domain
object. Follow these steps:

1. Create ContactExpiry.hbm.xml file in the orm/hibernate/hbm folder of the config
project of the host application.

2. Add the entry for this XML in the orm/hibernate/cfg/party-mapping.cfg.xml hibernate
configuration XML.

3. Add the mapping in ContactExpiry.hbm.xml as shown below.

Customization Examples

7-42 Oracle Banking Platform Extensibility Guide

Figure 7–55 Create Hybernate Mapping

Step 10 Configure Host Application Project
You will need to configure the Contact Expiry Application Service and Facade Layer in the
host application. To configure, follow these steps:

1. Configure APPX layer as the service layer for Contact Expiry service.

2. Open properties/hostapplicationlayer.properties present in the configuration project
and add an entry as shown below.

Figure 7–56 Adding an Entry in hostapplicationlayer.properties file

3. Configure APPX layer proxy as the proxy for Contact Expiry service.

4. Open properties/ProxyFacadeConfig.properties present in the configuration project
and add an entry as shown below.

Customization Examples

ADF Screen Customizations 7-43

Figure 7–57 Adding an entry in ProxyFacadeConfig.properties file

5. Configure the JSON and Facade layer mapping for Contact Expiry service.

6. Open properties/JSONServiceMap.properties present in the configuration project and
add the two entries as shown below.

Figure 7–58 Adding an entry in JSONServiceMap.properties file

Step 11 Deploy Project
After performing all the above mentioned changes, deploy the project as follows:

1. Add this project (com.ofss.fc.demo.party.contactexpiry) to the classpath of the branch
application project.

2. Open the launch configuration of the Tomcat Server. Add this project to the
classpath of the server as well.

3. Deploy the branch application project on the server and start it.

Client Application Changes
After creating database table to hold the input data and after creating the related
domain objects and service and facade layers, we can customize the user interface. The
customizations to the application have to be done on the client application. To
customize the UI, follow these steps.

Step 1 Create Model Project
You will need to create a model project to hold the required view objects and
application module. To create the model project, follow these steps:

1. In the client application, create a new project of the type ADF Model Project.

Customization Examples

7-44 Oracle Banking Platform Extensibility Guide

Figure 7–59 Create Model Project - ADF Model

2. Give the project a title (com.ofss.fc.demo.ui.model.party) and set the default package
as the same.

3. Click Finish to create the project.

Customization Examples

ADF Screen Customizations 7-45

Figure 7–60 Create Model Project - Click Finish

Step 2 Create Application Module
You will need to create an application module to contain the information of all the
view objects that you need to create. To create an application module, follow these
steps:

1. Right-click the model project and select New.

2. Choose Application Module from the dialog box that opens.

Customization Examples

7-46 Oracle Banking Platform Extensibility Guide

Figure 7–61 Create Application Module - ADF Business Components

3. Set the package of the application module to the default package
(com.ofss.fc.demo.ui.model.party)

4. Provide a name to the application module (DemoPartyAppModule)

Figure 7–62 Create Application Module - Set Package and Provide Name

Customization Examples

ADF Screen Customizations 7-47

5. Click Next and let the rest of the options be set to the default options.

6. You will see a summary screen for the application module. Click Finish to create
the application module.

Figure 7–63 Create Application Module - Summary

Step 3 Create View Object
You will need to create a view object for the newly added Expiry Date field. This view
object will be used on the screen to display the value of the field as well as to take the
input for the field. To create the view object, follow these steps:

1. Right-click the Java package com.ofss.fc.demo.ui.model.party and select New
View Object.

2. In the dialog box that opens, provide a name (ContactExpiryVO) for the view
object.

3. Provide a package (com.ofss.fc.demo.ui.model.party.contactexpiry) for the view
object.

4. For the Data Source Type option, select Rows populated programmatically, not
based on a query.

5. Click Next.

Customization Examples

7-48 Oracle Banking Platform Extensibility Guide

Figure 7–64 Create View Object - Provide Name

6. In the Attributes dialog, create a new attribute for Expiry Date field.

7. Provide a name (ExpiryDate) and type (Date) for the attribute.

8. For the Updatable option, select Always.

Figure 7–65 Create View Object - View Attribute

9. Click Next.

Customization Examples

ADF Screen Customizations 7-49

10. On the Application Module dialog, browse for the previously created
DemoPartyAppModule.

Figure 7–66 Create View Object - Application Module

11. For all other dialogs, keep the default options. Click Next till you reach the
summary screen as shown below.

12. Click Finish to create the view object.

Figure 7–67 Create View Object - Click Finish

Customization Examples

7-50 Oracle Banking Platform Extensibility Guide

Step 4 Create View Controller Project
You will need to create a view controller project to contain the UI elements. This
project will also hold the customizations to the application. To create the view
controller project, follow these steps:

1. In the client application, create new project of the type ADF View Controller Project.

Figure 7–68 Create View Controller Project - ADF View Controller Project

2. Give the project a title (com.ofss.fc.demo.ui.view.party) and set the defaults package
to the same.

3. Click Finish to finish creating the project.

Customization Examples

ADF Screen Customizations 7-51

Figure 7–69 Create View Controller Project - Project Title

4. Right-click the project and go to Project Properties. In the Libraries and Classpath tab,
add the following:

■ The Jar containing the screen to be customized (com.ofss.fc.ui.view.party.jar)

■ The Jar containing the domain objects and services for Contact Expiry
(com.ofss.fc.demo.party.contactexpiry.jar) as created in host application project.

■ All the required dependent Jars for the above Jars.

■ The Jar containing the customization class (com.ofss.fc.demo.ui.OptionCC.jar)

Customization Examples

7-52 Oracle Banking Platform Extensibility Guide

Figure 7–70 Create View Controller Project - Libraries and Classpath tab

5. In the Dependencies tab, browse for and add the previously created adf model
project (com.ofss.fc.demo.ui.model.party)

6. In the ADF View tab, check the Enable Seeded Customizations option to enable this
project for customizations.

Figure 7–71 Create View Controller Project - Dependencies Tab

7. Save the changes by clicking OK and rebuild the project.

Customization Examples

ADF Screen Customizations 7-53

Step 5 Create Maintenance State Action Interface
Create an interface containing the method definition for a maintenance action. This
interface will be implemented by the required maintenance state actions classes for the
screen to be customized. The state action method will take the instance of the backing
bean as a parameter.

Figure 7–72 Create an Interface

Step 6 Create State Action Class
You will need to create a class which will contain the business logic for the create
transaction for this screen. This class should have following features:

■ Implements the previously created state action interface.

■ Creates the Contact Point DTO from the users input.

■ Creates an instance of the Contact Point service proxy.

■ Calls the add method of the service passing the DTO.

Step 7 Create Update State Action Class
You will need to create a class which will contain the business logic for the update
transaction for this screen. This class should have following features:

■ Implements the previously created state action interface.

■ Creates the Contact Point DTO from the users input.

■ Creates an instance of the Contact Point service proxy.

■ Calls the update method of the service passing the DTO.

Customization Examples

7-54 Oracle Banking Platform Extensibility Guide

Figure 7–73 Create Update State Action Class

Figure 7–74 Create Update State Action Class - Service Exception

Step 8 Create Backing Bean
You will need to create a backing bean class for the screen to be customized. This class
should have the following features:

Customization Examples

ADF Screen Customizations 7-55

■ Should implement the interface ICoreMaintenance.

■ Private members to be added UI Components in customization and public
accessors for the same.

■ Private member for the backing bean of the original backing bean of the screen
(ContactPoint) which is initialized in the constructor of this class.

■ Private member for the parent UI Component of the newly added UI components
and public accessors which returns the corresponding component of the backing
bean.

■ Private member for the newly added view object (ContactExpiryVO) and the
current view objects present on the screen.

Figure 7–75 Create Backing Bean

■ clear() method which handles the user action Clear.

■ save() method which handles the maintenance state actions Create and Update.

■ Depending on the current state action, the save() method should instantiate either
DemoCreateContactPoint or DemoUpdateContactPoint and perform the
corresponding state action methods.

Customization Examples

7-56 Oracle Banking Platform Extensibility Guide

Figure 7–76 Create Backing Bean - Save and Clear Method

■ A public method to create the Contact Expiry DTO from the user's input on the
screen.

Figure 7–77 Create Backing Bean - Contact Expiry DTO Method

■ A value change event handler for the Expiry Date UI Component.

Figure 7–78 Create Backing Bean - OnExpiryDateChange

Customization Examples

ADF Screen Customizations 7-57

■ Value change event handlers for the existing UI Components on change of which
the screen data is to be fetched.

Figure 7–79 Create Backing Bean - Value Change Event Handler

■ Method containing the business logic to fetch screen data using Contact Expiry
proxy service.

Figure 7–80 Create Backing Bean - Contact Expiry Proxy Service

■ Create Managed Bean - You will need to register the DemoContactPoint backing
bean as a managed bean with a backing bean scope. Open the project's

Customization Examples

7-58 Oracle Banking Platform Extensibility Guide

adfc-config.xml which is present in the WEB-INF folder. In the Managed Beans tab,
add the binding bean class as a managed bean with backing bean scope as follows:

Figure 7–81 Create Managed Bean - Register Demo Contact Point

■ Create Event Consumer Class - You will need to create an event consumer class to
consume the Party Id Change event. When the user inputs a party id on the screen,
the business logic in this event consumer class will be executed automatically.

Figure 7–82 Create Event Consumer Class

Step 9 Create Data Control
For the event consumer class's method to be exposed as an event handler, you will
need to create a data control for this class.

1. In the Application Navigator, right-click the event consumer Java file and create data
control.

On creation of data control, an XML file is generated for the class and a
DataControls.dcx file is generated containing the information about the data
controls present in the project. You will be able to see the event consumer data
control in the Data Controls tab.

Customization Examples

ADF Screen Customizations 7-59

Figure 7–83 Create Data Control

2. Restart JDeveloper in the Customization Developer Role to edit the customizations.
Ensure that the appropriate Customization Context is selected.

Step 10 Add UI Components to Screen
Browse and locate the JSFF for the screen to be customized
(com.ofss.fc.ui.view.party.contactPoint.contactPoint.jsff) inside the JAR
(com.ofss.fc.ui.view.party.jar). Open the JSFF and do the required changes as follows:

1. Drag and drop the Panel Label & Message and Date UI components at the required
position on the screen.

2. For each component, set the required attributes using the Property Inspector panel
of JDeveloper.

3. Modify the containing Panel's width and number of columns attributes as
required.

4. For each component, add the binding to the DemoContactPoint backing bean's
corresponding members.

5. Add the value change event binding for the Expiry Date UI component to the
backing bean's corresponding method.

6. Change the value change event binding for the existing UI component on change
of which the screen data is fetched.

7. Change the backing bean attribute of the screen to the previously created
DemoContactPoint backing bean.

8. Save the changes. You will notice that JDeveloper has created a customization
XML in the ADF Library Customizations folder to save the differences between the
base JSFF and the customized JSFF. The generated contactPoint.jsff.xml should look
similar to as shown below.

Customization Examples

7-60 Oracle Banking Platform Extensibility Guide

Figure 7–84 Adding UI to Screens

Step 11 Add View Object Binding to Page Definition
You will need to add the view object binding for the previously created
ContactExpiryVO view object to the page definition of the screen to be customized.

1. Browse and locate the page definition for the screen to be customized
(com.ofss.fc.ui.view.party.contactPoint.pageDef.ContactPointPageDef.xml) and open it.

2. Add an attributeValues binding as shown below.

Figure 7–85 Adding View Object Binding to Page Definition

3. For Data Source option, locate the previously created ContactExpiryVO view object
present in the DemoPartyAppModule.

4. For Attribute option, choose the ExpiryDate attribute present in the view object.

Customization Examples

ADF Screen Customizations 7-61

Figure 7–86 Create Attribute Binding

Step 12 Add Method Action Binding to Page Definition
You will need to add the method action binding for the previously created
DemoPartyIdEventChangeConsumer event consumer class to the page definition of the
screen to be customized.

1. Add a methodAction binding as shown below.

2. For the Data Collection option, locate the previously created
DemoPartyIdChangeEventConsumer data control.

Figure 7–87 Adding Method Action Binding

Customization Examples

7-62 Oracle Banking Platform Extensibility Guide

Figure 7–88 Adding Method Action Binding - Demo Party Change Event Consumer

Step 13 Edit Event Map of Page Definition
You will need to map the Event Producer for the party id change event to the previously
created Event Consumer.

1. In the Structure panel of JDeveloper, right-click the page definition and select Edit
Event Map.

2. In the Event Map Editor dialog that opens, edit the mapping for the party id change
event. Select the previously created Event Consumer's method.

Figure 7–89 Edit Event Map of Page Definition - Edit Mapping

Customization Examples

ADF Screen Customizations 7-63

Step 14 Edit Event Map of Page Definition
Save the changes. You will notice that JDeveloper has created a customization XML in
the ADF Library Customizations folder to save the differences between the base JSFF
and the customized JSFF. The generated contactPoint.jsff.xml should look similar to as
shown below.

Figure 7–90 Edit Event Map of Page Definition - ContactPoint.jsff.xml

Step 15 Deploy Customization Project
After finishing the customization changes, exit the Customization Developer Role and
start JDeveloper in Default Role. Deploy the view controller project as an ADF Library
Jar (com.ofss.fc.demo.ui.view.party.jar)

1. Go to Project Properties of the main application project and in the Libraries and
Classpath, add the following:

■ View controller project Jar (com.ofss.fc.demo.ui.view.party.jar)

■ Host domain Jar (com.ofss.fc.demo.party.contactexpiry.jar)

■ Customization Class Jar (com.ofss.fc.demo.ui.OptionCC.jar)

■ All dependency libraries and Jars for the project

■ Start the application and navigate to Party -> Contact Information -> Contact
Point screen. Input a party id on the screen and perform the read, create and
update actions on Contact Point. You will be able to input data and fetch value
for the newly added Expiry Date field.

Customization Examples

7-64 Oracle Banking Platform Extensibility Guide

Figure 7–91 Contact Point screen with Expiry Date field

7.7.4 Removing existing UI components from a screen
In this fourth example of customization, we will be removing some existing UI
components present in a screen.

Use Case Description: The Back Office -> Events -> Alert Maintenance screen is used to
define Alerts in the system for different types of events / activities. In this screen, there
is a check box field Is Conditional for specifying whether there is a Rule to be associated
with this alert and the Effective Date for the rule. If the check box is unchecked, the Rule
and Expiry Date fields are disabled. If the check box is checked, the Rule and Expiry
Date fields are enabled. We will remove these 3 fields in customization.

Figure 7–92 Remove UI Components from Alert Maintenance screen

To create customizations as mentioned in this use case, follow these steps:

Customization Examples

ADF Screen Customizations 7-65

Step 1 Create View Controller Project
You will need to create a view controller project to hold the customizations that need
to be done on the screen. To create a view controller project, follow these steps:

1. In the client application, create a new project of the type ADF View Controller
Project.

2. Give the project a title (com.ofss.fc.demo.ui.view.ep) and set the default package to
the same.

3. Click Finish to finish creating the project.

Figure 7–93 Create ADF View Controller Project - Project Technologies

4. Right-click the project and go to Project Properties. In the Libraries and Classpath tab,
add the following:

■ The Jar containing the screen to be customized (com.ofss.fc.ui.view.ep.jar)

■ All the required dependent Jars for the above Jar.

■ The Jar containing the customization class (com.ofss.fc.demo.ui.OptionCC.jar)

5. In the ADF View tab, check the Enable Seeded Customizations option to enable
seeded customizations for this project.

Customization Examples

7-66 Oracle Banking Platform Extensibility Guide

Figure 7–94 Create View Controller Project - Libraries and Class Path

6. Restart JDeveloper in the Customization Developer Role to edit the customizations.
Ensure that the appropriate Customization Context is selected.

Step 2 Remove UI Components from Screen
Browse and locate the JSFF for the screen to be customized
(com.ofss.fc.ui.view.ep.activityEventAction.form.ActivityEventActionMaintenance.jsff). Open
the JSFF and do the required changes as follows:

1. Select the Is Conditional check box component. In the Property Inspector panel, set
the Rendered property to false.

2. Select the Rule Id custom component. In the Property Inspector panel, set the
Rendered property to false.

3. Select the Rule Effective Date component. In the Property Inspector panel, set the
Rendered property to false.

4. Set the Rendered property to false is better than completely deleting the component
to avoid binding errors.

5. Save the changes. You will notice that JDeveloper has created a customization
XML in the ADF Library Customizations folder to save the differences between
the base JSFF and the customized JSFF. The generated

 ActivityEventActionMaintenance.jsff.xml should look similar to as shown below.

Customization Examples

ADF Screen Customizations 7-67

Figure 7–95 Modifications in the ActivityEventActionMaintenance.jsff.xml

Step 3 Deploy Customization Project
After finishing customization changes, exit Customization Developer Role and start
JDeveloper in Default Role. Deploy the view controller project as an ADF Library Jar
(com.ofss.fc.demo.ui.view.ep.jar).

1. Add this Jar and customization class jar to the classpath of the main application
project.

2. Start the application and navigate to Back Office -> Events -> Alert Maintenance
screen. You will notice that the fields Is Conditional, Rule Id and Rule Effective Date
are not present on the screen.

Figure 7–96 Modified Alert Maintenance Screen

Customization Examples

7-68 Oracle Banking Platform Extensibility Guide

8

SOA Customizations 8-1

8SOA Customizations

OBP provides the functionality for customizing the SOA composite applications. The
steps to customize a SOA composite application are similar to those of customizing an
ADF View Controller application with a few differences. The similarities and
differences would be apparent in the examples demonstrated in the following sections.

The following section provides details about the SOA Components Customization.
The detailed documentation for customizing and extending the SOA Components is
also available at the Oracle website:

http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_soaedit.htm

8.1 Customization Layer
To customize an application, you must specify the customization layers and their
values in the CustomizationLayerValues.xml file, so that they are recognized by
JDeveloper.

We need to create a customization layer with name option and values demo and
another bank name.

To create this customization layer, follow these steps:

1. From the main menu, choose the File -> Open option.

2. Locate and open the file CustomizationLayerValues.xml which is found in the
<JDEVELOPER_HOME>/jdeveloper/jdev directory.

3. In the XML editor, add the entry for a new customization layer and values as
shown in the following image.

http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_soaedit.htm

Customization Class

8-2 Oracle Banking Platform Extensibility Guide

Figure 8–1 Add an entry for new Customization Layer

4. Save and close the file.

8.2 Customization Class
Before customizing an application, a customization class needs to be created which is
the interface that the Oracle Meta-data Services framework uses to define which
customization layer should be applied to the application's base meta-data.

To create a customization class, follow these steps:

1. From the main menu, choose File -> New.

2. Create a generic project and give a name (com.ofss.fc.demo.ui.OptionCC) to the
project.

3. Go to Project Properties for this project and add the required MDS libraries in the
classpath of the project.

4. Create the customization class in this project. The customization class must extend
the oracle.mds.cust.CustomizationClass abstract class.

Implement the following abstract methods of the CustomizationClass as follows:

1. getCacheHint() - This method will return the information about whether the
customization layer is applicable to all users, a set of users, a specific HTTP
request or a single user.

2. getName() - This method will return the name of the customization layer.

3. getValue() - This method will return the customization layer value at runtime.

The screenshot below depicts a sample implementation of the above methods.

Enabling Application for Seeded Customization

SOA Customizations 8-3

Figure 8–2 Create Customization Class

5. Build this class and deploy the project as a JAR file
(com.ofss.fc.demo.ui.OptionCC.jar).

This JAR file should only contain the customization class.

6. Place this JAR file in the location <JDEVELOPER_
HOME>/jdeveloper/jdev/lib/patches so that the customization class is available in the
classpath of Jdeveloper.

8.3 Enabling Application for Seeded Customization
Seeded customization of an application is the process of taking a generalized
application and making modifications to suit the needs of a particular group. The
generalized application first needs to be enabled for seeded customization before any
customizations can be done on the application.

To enable seeded customization for the application, follow these steps:

1. Go to the Project Properties of the application's project.

2. In the ADF View section, check the Enable Seeded Customizations option.

3. In the Libraries and Classpath section, add the previously deployed which contains
the customization class.

SOA Customization Example Use Cases

8-4 Oracle Banking Platform Extensibility Guide

Figure 8–3 Enabling Application for Seeded Customization

4. In the Application Resources tab, open the adf-config.xml present in the
Descriptors/ADF META-INF folder.

5. In the list of Customization Classes, remove all the entries and add the
com.ofss.fc.demo.ui.OptionCC.OptionCC class to this list. The sections below will
elaborate in detail the actual customization of a SOA process with examples.

8.4 SOA Customization Example Use Cases
This section describes the examples use cases of SOA customization.

8.4.1 Add a Partner Link to an Existing Process
In this example of SOA customization, we will be adding a Partner Link call to an
Echo Service to an existing SOA process. The Echo Service will take a string input and
respond with the same string as output.

The following section will explain how to create a SOA project and process with the
example of Echo Service.

Step 1 Create SOA Project
You will need to create a SOA project to contain the Echo Service process. To create the
SOA project, follow these steps:

1. In the Main Menu, go to File -> New.

2. In the Project Gallery that opens, select SOA Project and click OK.

SOA Customization Example Use Cases

SOA Customizations 8-5

Figure 8–4 Select SOA Project

3. In the Create SOA Project wizard, enter appropriate project name (EchoService)
and location for the project.

4. Click Next.

Figure 8–5 Enter SOA Project Name

5. In the next dialogue of the wizard, enter appropriate name (EchoService) for the
SOA composite.

6. Select Empty Composite from the drop-down menu.

7. Click Finish.

SOA Customization Example Use Cases

8-6 Oracle Banking Platform Extensibility Guide

Figure 8–6 Configure SOA Settings

Step 2 Add Mediator Component
You will need to add a Mediator component to the BPEL process to process the input to
the SOA process and generate an output.

To add the Mediator, follow these steps:

1. From the Project Navigator tab, select and open EchoService.bpel in the Design
mode.

2. From the Component Palette tab, in SOA Components section, select the Mediator
component.

3. Drag and drop it onto the bpel process.

4. In the Create Mediator dialogue that opens, enter appropriate name
(EchoService).

5. From the Templates drop-down, select Synchronous Interface.

6. Check the Create Composite Service with SOAP Bindings option.

7. Click OK.

SOA Customization Example Use Cases

SOA Customizations 8-7

Figure 8–7 Create Mediator

8. An EchoService.mplan file will be created. Open this file in Design mode.

9. In the Routing Rules section, click the icon for Add.

10. Select Static Routing Rule from pop-up menu.

11. In the Target Type dialogue that opens, click Echo.

Figure 8–8 Select Target Type

A Static Routing section will be added to the screen.

12. Click the icon next to the Transform Using drop-down.

SOA Customization Example Use Cases

8-8 Oracle Banking Platform Extensibility Guide

13. In the Request Transformation Map dialogue that opens, select the option Create
New Mapper File.

14. Click OK.

Figure 8–9 Request Transformation Map to create new mapper file

15. This will create a singleString_to_singleString.xsl file. Open this file in Design
mode.

You will see the input parameters in tree format on the left hand side and the
output parameters on the right hand side of the screen.

16. In our case, the input and output contain a single string.

17. Select the input string from the left hand side and drag and drop it to the output
string on the right hand side. This will create a mapping between input and
output parameters.

Figure 8–10 Mapping Input and Output string

18. Save all files and build the project.

SOA Customization Example Use Cases

SOA Customizations 8-9

Step 3 Deploy Project to SOA Server
You will need to deploy this project to a SOA Server. From the Admin team, get details
of the SOA Server and configure it in your JDeveloper.

After adding the SOA Server to your JDeveloper, follow these steps to deploy the
EchoService composite to the server:

1. In the Project Navigator tab, right click the project and select Deploy.

2. In the Deploy EchoService dialogue that opens, select Deploy to Application Server
from the list.

3. Click Next.

Figure 8–11 Select Deployment Action

4. In the Deploy Configuration dialogue, check the option Overwrite any existing
composites with the same revision ID.

5. Click Next.

SOA Customization Example Use Cases

8-10 Oracle Banking Platform Extensibility Guide

Figure 8–12 Deploy Configuration Settings

Figure 8–13 Select Deployment Server

6. Select the appropriate Partition of the SOA Server where the composite should be
deployed.

7. Click Finish.

SOA Customization Example Use Cases

SOA Customizations 8-11

Figure 8–14 Select Target SOA Server

Step 4 Test Echo Service
After deploying the EchoService composite to a SOA Server, you can test it through the
EM console:

1. Log in to em console of the SOA Server to which the composite is deployed.

2. From the SOA Domain select the EchoService composite.

Figure 8–15 Select SOA Domain

SOA Customization Example Use Cases

8-12 Oracle Banking Platform Extensibility Guide

3. On the right hand side panel, you can see the Dashboard which lists the instances of
SOA requests to that composite and many other options.

4. Click the Test button to test the composite.

Figure 8–16 Test Web Service

5. In the Input Arguments section, enter input and click Test Web Service.

6. You will be able to see the response in the Response section.

Step 5 Add Customizable Scope to SOA Application
By default, a BPEL process in itself is not customizable. In addition to the steps
followed to enable customizations in a SOA application, you will need to add a Scope
component to the BPEL process and enable it for customizations.

To demonstrate customizations of a SOA process, we will be using the BPEL process
NotifyCustomerHubProcess present in the composite
com.ofss.fc.workflow.process.NotifyCustomerHub.

To see the flow of the NotifyCustomerHubProcess before customizations:

1. Deploy the composite to a SOA Server.

2. Log in to the em console and select the process from SOA Domain.

3. From the Dashboard, click Test.

4. Enter appropriate input and click Test Web Service.

5. From the Dashboard, click an Instance of the composite request.

6. Select the Flow tab to see the flow of the process.

SOA Customization Example Use Cases

SOA Customizations 8-13

Figure 8–17 Customization of SOA Application - Flow

7. Open the SOA application which contains the base composite which will be
customizing. The aforementioned process is present in the
OriginationAndFulfillment application inside the
com.ofss.fc.workflow.NotifyCustomerHub project.

To add a customizable scope to the BPEL process, follow these steps:

1. Open the NotifyCustomerHubProcess.bpel file in Design mode.

2. From the Component Palette panel on the right side, in the BPEL Constructs section,
drag the Scope component and drop it on to the BPEL process as shown in the
figure.

3. Double-click the component and enter appropriate name (EchoServiceScope) for
the component.

4. Drag and drop the existing Assign component labeled setTitle on to the newly
added EchoServiceScope component.

SOA Customization Example Use Cases

8-14 Oracle Banking Platform Extensibility Guide

Figure 8–18 Customization of SOA Application - Notify Customer

5. Right click the Scope component and select Customizable from the context menu.

6. Save all the changes and restart JDeveloper in Customization Developer Role.

Step 6 Customize the SOA Composite
After adding a Customizable Scope to the base composite, you can start performing
customizations in JDeveloper's Customization Developer Role.

When you open the NotifyCustomerHubProcess.bpel file in Design mode, you will notice
that all other components in the process, except the customizable EchoServiceScope
component, are disabled. This means that your customizations are limited to that
scope.

In the following sections, we will be adding a Partner Link call to the previously
created EchoService BPEL process and other required components in the customization
mode.

Step 7 Add Partner Link Component
To add a Partner Link to the BPEL process, follow these steps:

1. From the Project Navigator, open the NotifyCustomerHubProcess.bpel file in
Design mode.

2. From the Component Palette panel on the right side, in the BPEL Constructs section,
drag the Partner Link component and drop it on to the Partner Links section of the
BPEL process.

3. In the Create Partner Link dialogue that opens, enter appropriate name
(EchoService) for the partner link.

4. In the WSDL Settings section of the dialogue, enter the URL for the previously
created EchoService composite.

SOA Customization Example Use Cases

SOA Customizations 8-15

5. You will get alert notifying that there are no Partner Links defined in the current
WSDL with an option to create a wrapper WSDL file with partner links defined for
specified WSDL.

6. Click Yes.

A new EchoServiceWrapper.wsdl file will be created which contains the partner
links.

7. Select the newly defined partner link type and partner role in the Partner Link Type
and Partner Role drop-down.

8. Select Not Specified option in the My Role drop-down.

Figure 8–19 Add Partner Link Component

Step 8 Add Invoke Component
You will need to add an Invoke component to invoke the previously added partner link
call to EchoService.

To add Invoke component, follow these steps:

1. From the Component Palette panel on the right side, in the BPEL Constructs section,
drag the Invoke component and drop it on the BPEL process inside the
EchoServiceScope component.

2. Click the Invoke component and drag it to the previously added EchoService
partner link.

3. Double-click the Invoke component.

4. In the Edit Invoke dialogue that opens, enter an appropriate name
(invokeEchoService) for the component.

5. Click the icon for adding a new variable in the Input Variable and Output Variable
sections.

6. Click OK to save the changes.

SOA Customization Example Use Cases

8-16 Oracle Banking Platform Extensibility Guide

Figure 8–20 Add Invoke Component

Step 9 Add Assign Components
An Assign component is used to assign values to a variable. These values can be
directly assigned from one variable to another or modified using BPEL functions
available.

The EchoService accepts a single string as an input and gives a single string as an
output. The Input Variable and Output Variable defined in the previously created
invokeEchoService component will be used to hold the input value for the EchoService
and the output returned respectively.

In our case, we will need to add two Assign components for following purposes:

■ To populate the Input Variable of the invokeEchoService component with the value
returned by the existing setTitle component.

■ To populate the setTitle component with the value returned in the Output Variable
of the invokeEchoService component.

■ To add the Assign components, follow these steps:

1. From the Component Palette panel on the right side, in the BPEL Constructs
section, drag the Assign component and drop it on the BPEL process inside the
EchoServiceScope component between the setTitle and invokeEchoService
components.

2. Double-click the Assign component.

3. In the Edit Assign dialogue that opens, enter appropriate name
(copyToEchoServiceInput) for the component.

SOA Customization Example Use Cases

SOA Customizations 8-17

4. In the Copy Rules tab, select the compositeInstanceTitle from the left hand side
tree and drag it to the invokeEchoService_inputVariable on the right hand side
screen as shown in the figure.

5. Click OK.

Figure 8–21 Edit Copy Rules Variable

6. Repeat the above steps for another Assign component labeled
copyFromEchoServiceOutput. This component should be present after the
invokeEchoService component.

The Copy Rules for this component should be as shown in the figure below.

Figure 8–22 Add Assign Components - Reply

7. Save all the changes.

The Design view of the BPEL process should look as shown in the figure
below:

SOA Customization Example Use Cases

8-18 Oracle Banking Platform Extensibility Guide

Figure 8–23 Design View of the BPEL Process

Step 10 Test the Customized Composite
After performing the customizations, build the project and deploy it to a SOA Server.
You will need to include the Customization Class JAR in the runtime classpath of the
deployed application.

To test the customized composite, follow these steps:

1. Log in to the em console and select the composite from the SOA Domain.

2. Click Test and enter appropriate input.

3. On the Dashboard panel, click the composite Instance. In the Flow panel of the
screen, you will be able to see the flow of the customized composite.

SOA Customization Example Use Cases

SOA Customizations 8-19

Figure 8–24 Test Customized Composite - Flow

4. Click the invokeEchoService component from the flow to see the request and
response XML for the invoke operation to the partner link.

Figure 8–25 Test Customized Composite - invokeEchoService

8.4.2 Add a Human Task to an Existing Process
In this example, we will demonstrate how to add a Human Task component mode.

In this example of SOA customization, we will be adding a Human Task to a BPEL
process. Instead of adding the Human Task in customization mode, we will build a

SOA Customization Example Use Cases

8-20 Oracle Banking Platform Extensibility Guide

separate BPEL process with the human task and then customize the base composite to
include a Partner Link call to that BPEL process.

The following section will demonstrate how to create a BPEL process with Human Task.
The human task will take the title as a string input and will have the outcomes REJECT
and APPROVE. The BPEL process will invoke the human task passing the title as
input. Based on the outcome of the human task, the title will be suitably modified and
returned by the BPEL process.

Step 1 Create SOA Project
You will need to create a SOA project to contain the Echo Service process. To create the
SOA project, follow these steps:

1. In the Main Menu, go to File -> New.

2. In the Project Gallery that opens, select SOA Project.

3. Click Ok.

Figure 8–26 Select SOA Project

4. In the Create SOA Project wizard, enter appropriate project name (TitleApproval)
and location for the project and click Next.

SOA Customization Example Use Cases

SOA Customizations 8-21

Figure 8–27 Create SOA Project Name

5. In the next dialogue of the wizard, enter appropriate name (TitleApproval) for the
SOA composite.

6. Select Composite With BPEL Process from the drop-down menu.

7. Click Finish.

Figure 8–28 Configure SOA Settings

8. The dialog Create BPEL Process will open. Enter a name (TitleApprovalProcess) for
the process and select Asynchronous BPEL Process from the templates drop-down.

SOA Customization Example Use Cases

8-22 Oracle Banking Platform Extensibility Guide

Figure 8–29 Configure BPEL Process Settings

Step 2 Create Human Task
After defining the BPEL process, you will need to add the Human Task component to
the process. To add the Human Task, follow these steps:

1. From the Project Navigator tab, select and open composite.xml in the Design mode.

2. From the Component Palette tab, in SOA Components section, select the Human
Task component and drag and drop it onto the components section of the
composite.xml.

3. In the Create Human Task dialog that opens, enter a name
(TitleApprovalHumanTask) for the human task.

4. Click OK.

Figure 8–30 Enter Human Task Name

5. From Project Navigator, select and open TitleApprovalHumanTask.task file in Design
mode. This file has the human task definition.

6. In the General section, specify a Task Title and Description for the human task.

SOA Customization Example Use Cases

SOA Customizations 8-23

Figure 8–31 Create Human Task - General Tab

7. In the Data section, click the icon for add task parameter.

8. In the Add Task Parameter dialog, specify the parameter type and name for the
input to the human task. In our case, the input task parameter would be a string
title.

Figure 8–32 Add Human Task Parameter

Figure 8–33 Create Human Task - Data Tab

SOA Customization Example Use Cases

8-24 Oracle Banking Platform Extensibility Guide

The Assignment section is used to define the Users or User Groups to which the
human task should be assigned.

9. Double-click Edit Participant.

10. In the Add Participant Type dialog, check the Value-based option for Specify
Attributes Using.

11. Click the icon for adding a value.

12. Select the User By Name option and enter the name of your user (weblogic).

Figure 8–34 Add Participant Type Details

Figure 8–35 Create Human Task - Assignment Tab

13. From the Project Navigator, open the TitleApprovalProcess.bpel file in Design mode.

14. From the Component Palette, select the component Human Task and drag-drop it
on to the BPEL process.

15. Click the icon to add task parameter.

16. In the Task Parameters dialog, select the string input to the BPEL process.

SOA Customization Example Use Cases

SOA Customizations 8-25

Figure 8–36 Select Human Task Parameters

17. In the task outcomes Switch in the BPEL process, delete the condition for otherwise.

Figure 8–37 Create Human Task - Delete Condition

18. From the Component Palette, select the Assign component and drag-drop it to the
REJECT outcome of the switch.

19. Enter a name (rejectTitle) for the component.

20. In the Copy Rules section of the assign, use the Expression Builder to set the output
string variable of the BPEL process to '<title> - Rejected'.

SOA Customization Example Use Cases

8-26 Oracle Banking Platform Extensibility Guide

Figure 8–38 Create Human Task - Expression Builder

Figure 8–39 Create Human Task - Copy Rules

21. Save all changes to the human task. The BPEL process should look as shown in
the figure below.

SOA Customization Example Use Cases

SOA Customizations 8-27

Figure 8–40 Create Human Task - BPEL Process

22. Deploy the SOA process to the server as mentioned in the previous example.

Step 3 Create Human Task Form
The Human Task is visible to assigned users in the BPM Worklist application. To display
the task parameters and the payload for the task, you will need to create a task-flow
with the Human Task Form. This task form can be auto generated through the process.
Follow these steps:

1. From the Project Navigator, open the TitleApprovalHumanTask.task file in Design
mode.

2. Click the button for Create Task Form.

3. Select the Auto-generate Task Form option from the context menu.

SOA Customization Example Use Cases

8-28 Oracle Banking Platform Extensibility Guide

Figure 8–41 Select Human Task Form

4. Enter a name (TitleApprovalHumanTask) and location for the human task form
project.

5. Click Finish.

The generated human task form project will have default file names. Re-Factor file
names for form and page definition using appropriate naming conventions.

Step 4 Deploy Human Task Form Project
You will need to deploy the human task form project on the UI server for the
previously deployed SOA process. To deploy, follow these steps:

1. Clean and build the project.

2. Right-click the project and select Deploy from the context menu.

3. In the Deploy dialog that opens, select the Deploy to Application Server option
from the list and click Next.

4. Select the appropriate UI server for the SOA server.

5. Click Finish.

SOA Customization Example Use Cases

SOA Customizations 8-29

Figure 8–42 Select Human Task Form Deployment Action

Figure 8–43 Select Human Task Form - Weblogic Options

Step 5 Add Customizable Scope to SOA Application
To demonstrate customizations of a SOA process, we will be using the BPEL process
NotifyCustomerHubProcess present in the composite
com.ofss.fc.workflow.process.NotifyCustomerHub.

Open the SOA application which contains the base composite which will be
customizing. The aforementioned process is present in the OriginationAndFulfillment
application inside the com.ofss.fc.workflow.NotifyCustomerHub project.

SOA Customization Example Use Cases

8-30 Oracle Banking Platform Extensibility Guide

To add a customizable scope to the BPEL process, follow these steps:

1. Open the NotifyCustomerHubProcess.bpel file in Design mode.

2. From the Component Palette panel on the right side, in the BPEL Constructs section,
drag the Scope component and drop it on to the BPEL process as shown in the
figure.

3. Double click the component and enter appropriate name for the component.

4. Drag and drop the existing Assign component labeled setTitle on to the newly
added Scope component.

Figure 8–44 Add Customization Scope to SOA Application

5. Right-click the Scope component and select Customizable from the context menu.

6. Save all the changes and restart JDeveloper in Customization Developer Role.

Step 6 Customize the SOA Composite
After adding a Customizable Scope to the base composite, you can start performing
customizations in JDeveloper's Customization Developer Role.

When you open the NotifyCustomerHubProcess.bpelf ile in Design mode, you will notice
that all other components in the process, except the customizable Scope component,
are disabled. This means that your customizations are limited to that scope.

In the following sections, we will be adding a Partner Link call to the previously
created TitleApproval BPEL process and other required components in the
customization mode.

Step 7 Add Partner Link Component
To add a Partner Link to the BPEL process, follow these steps:

1. From the Project Navigator, open the NotifyCustomerHubProcess.bpel file in
Design mode.

SOA Customization Example Use Cases

SOA Customizations 8-31

2. From the Component Palette panel on the right side, in the BPEL Constructs section,
drag the Partner Link component and drop it on to the Partner Links section of the
BPEL process.

3. In the Create Partner Link dialogue that opens, enter appropriate name
(TitleApproval) for the partner link.

4. Select the following options:

1. TitleApprovalProcess as the Partner Link Type.

2. TitleApprovalProcessProvider as the Partner Role.

3. TitleApprovalProcessRequester as the My Role.

Figure 8–45 Add Partner Link Component

Step 8 Add Invoke Component
You will need to add an Invoke component to invoke the previously added partner link
call to TitleApproval. To add Invoke component, follow these steps:

1. From the Component Palette panel on the right side, in the BPEL Constructs section,
drag the Invoke component and drop it on the BPEL process inside the Scope
component.

2. Click the Invoke component and drag it to the previously added TitleApproval
partner link.

3. Double-click the Invoke component.

4. In the Edit Invoke dialogue that opens, enter an appropriate name
(invokeTitleApproval) for the component.

5. Click the icon for adding a new variable in the Input Variable section.

6. Click OK to save the changes.

SOA Customization Example Use Cases

8-32 Oracle Banking Platform Extensibility Guide

Figure 8–46 Add Invoke Component

Step 9 Add Receive Component
You will need to add a Receive component to receive output from the previously added
partner link call to TitleApproval. To add Receive component, follow these steps:

1. From the Component Palette panel on the right side, in the BPEL Constructs section,
drag the Invoke component and drop it on the BPEL process inside the Scope
component.

2. Click the Receive component and drag it to the previously added TitleApproval
partner link.

3. Double-click the Receive component.

4. In the Edit Receive dialogue that opens, enter an appropriate name
(receiveTitleApproval) for the component.

5. Click the icon for adding a new variable in the Output Variable section.

6. Click OK to save the changes.

SOA Customization Example Use Cases

SOA Customizations 8-33

Figure 8–47 Add Receive Component using BPEL functions

Step 10 Add Assign Components
An Assign component is used to assign values to a variable. These values can be
directly assigned from one variable to another or modified using BPEL functions
available.

The TitleApproval accepts a single string as an input and gives a single string as an
output. The Input Variable and Output Variable defined in the previously created
invokeTitleApproval and receiveTitleApproval components will be used to hold the input
value for the TitleApproval and the output returned respectively.

In our case, we will need to add two Assign components for following purposes:

■ To populate the Input Variable of the invokeTitleApproval component with the value
returned by the existing setTitle component.

■ To populate the setTitle component with the value returned in the Output Variable
of the receiveTitleApproval component.

■ Add the two required Assign components and save all changes.

The customized process should look as shown in the figure below.

SOA Customization Example Use Cases

8-34 Oracle Banking Platform Extensibility Guide

Figure 8–48 Add Assign Component

Step 11 Deploy and Test Customized SOA Composite
After performing the customizations, build the project and deploy it to a SOA Server.
You will need to include the Customization Class JAR in the runtime classpath of the
deployed application.

To test the customized composite, follow these steps:

1. Log in to the em console and select the composite from the SOA Domain.

2. Click Test and enter appropriate input.

3. A Human Task will be created and assigned to the user as specified in the human
task definition.

4. Log in to the BPM Worklist application with the appropriate user.

You will be able to see the previously created task on the dashboard.

5. Select the task from the list and click Approve or Reject button to perform approve
or reject action on the task.

SOA Customization Example Use Cases

SOA Customizations 8-35

Figure 8–49 Deploy and Test Customized SOA Composite - My Tasks Tab

6. On the Dashboard panel of the em, click the composite Instance.

In the Flow panel of the screen, you will be able to see the flow of the customized
composite.

Figure 8–50 Deploy and Test Customized SOA Composite - Flow

7. Click the invokeTitleApproval component to see the request xml for the partner link
call to TitleApproval process.

SOA Customization Example Use Cases

8-36 Oracle Banking Platform Extensibility Guide

Figure 8–51 Deploy and Test Customized SOA Composite - Invoke Input

8. Click the receiveTitleApproval component to see the response xml for the partner
link call to TitleApproval process.

Figure 8–52 Deploy and Test Customized SOA Composite - Receive Output

9

Batch Framework Extensions 9-1

9Batch Framework Extensions

Most of the enterprise applications require bulk processing of records to perform
business operations in real-time environments. These business operations include
complex processing of large volumes of information that are most efficiently processed
with minimal or no user interaction. Such operations would typically include
time-based events (for example, month-end calculations, notices or correspondence),
periodic application of complex business rules processed repetitively across very large
data sets (for example, rate adjustments). All such scenarios form a part of batch
processing. Thus, batch processing is used to process billions of records for enterprise
applications.

There are few primary categories in OBP Batch Processes:

■ Beginning of Day (BOD)

■ Cut-off

■ End of Day (EOD)

■ Internal EOD

■ Statement Generation

■ Customer Communication

Additional categories can also be configured as per the requirement.

9.1 Typical Business Day in OBP
The following graphic describes a typical business day in OBP:

Overview of Categories

9-2 Oracle Banking Platform Extensibility Guide

Figure 9–1 Business Day in OBP

9.2 Overview of Categories
This topic describes the categories in OBP Batch Processes.

9.2.1 Beginning of Day (BOD)
The activities for a new day of the bank / branch begin with the BOD (beginning of
day). This is a batch process which executes a group of shells (programs) which are
required to be performed before the normal day-to-day operations at the branch can be
started. The BOD typically includes

■ TD Maturity and Interest Processing

■ Standing instructions execution (Based on setup)

■ Loan Charging, Drawdown and Auto-Disbursement

■ Value date processing of cheques (Based on the setup)

■ Reports Generation

9.2.2 Cut-off
Cut-off is a process that sets the trigger for modules to start logging transactions with a
new date.

It also marks cut-off for the channel transactions.

9.2.3 End of Day (EOD)
Once all the operations for the current working date of the branch are completed and
all the transactions are posted the Branch EOD batch is started. This batch executes a

Batch Framework Architecture

Batch Framework Extensions 9-3

group of shells (programs) which are required to be performed before the Business
Date of the branch is changed to the next working date. It marks the end of a business
day. The EOD typically includes:

■ DDA Sweep-Out Instruction

■ Loan Rate Change

■ Term Deposit Lien Expiry and Interest Capitalization

■ DDA Balance Change, Rate Change, Interest Capitalization and Settlement

■ Account and Party Asset Classification

■ Loan Interest Computation

■ Accounting Verification

9.2.4 Internal EOD
This category performs all the activities which do not affect the customer account but
are related to bank internal processing. Internal EOD typically includes:

■ Interest Accrual and Compounding

■ Deferred Ledger Balance Update

■ Balance Period Creation

■ Financial Closure

9.2.5 Statement Generation
This category performs different statement generation activities on the monthly or
yearly basis. It typically includes:

■ Periodic PL balance history Generation

■ CASA Statement Generation

■ Loan Statement Generation

■ TD Statement Generation

9.2.6 Customer Communication
This category performs different communications which needs to be done with the
customer on the regular basis. It typically includes:

■ Regular Account Balance Notification On Specified Date

9.3 Batch Framework Architecture
This section describes the architecture of the Batch Framework.

9.3.1 Static View
The static view of batch framework shows the architecturally significant classes
included in the batch framework being developed. It is in line with the overall design
and development guidelines and principles. This section shows the class diagrams
representing the static model of the batch framework emphasizing the static structure
of the system using objects, attributes and relationships.

Batch Framework Architecture

9-4 Oracle Banking Platform Extensibility Guide

Class Diagram
The following diagram depict details about the different classes of the code which are
involved in the batch execution.

Figure 9–2 Batch Framework Architecture - Static View

9.3.2 Dynamic View
This section emphasizes the dynamic behavior of the system by showing
collaborations among objects and changes to the internal states of objects.

Batch Framework Architecture

Batch Framework Extensions 9-5

Sequence Diagram
The following diagram depicts the sequence diagram for Batch framework. It provides
details about the flow of control during the batch execution.

Figure 9–3 Dynamic View Sequence Diagram

State Diagram of a Shell
When the end of day batch starts, every shell is reset to Not Started. During the course
of the batch, the shell status will change till the shell is completed. The transitions of
shell execution are explained in the state diagram below:

Batch Framework Components

9-6 Oracle Banking Platform Extensibility Guide

Figure 9–4 State Diagram of a Shell

9.4 Batch Framework Components
This section describes the batch framework components.

9.4.1 Category Components
This section describes the category components.

CategoryListenerMDB
This MDB listens to the FCBBatchRequestQ and delegate to CategoryHelper for
further processing.

CategoryHelper
This class starts or restarts a category depending upon the request received.

It will validate the input xml Request, validate the prerequisites for starting/restarting
a category, get the list of shells that can be initiated on a category start/shell

Batch Framework Components

Batch Framework Extensions 9-7

completion, prepare the Batch XML Message for each of the shell and send a message
to FCBBatchShellQ for each Shell to be started.

It also services requests initiation of the next shell after a shell has been successfully
completed.

9.4.2 Shell Components
This section describes the shell components.

ShellListenerMDB
This MDB listens on ShellRequestQ and delegate to ShellProcessHelper for processing.

ShellProcessHelper
This class validates the input request and calls appropriate batch handler to start the
shell. It will call:

■ BatchFrameworkShellHelper for non-report Java Bean Based Shell

■ ProcedureShellHelper for Procedure based shell

■ BatchReportShellBean for report shells

■ BatchReportRestartShellBean for report epilogue shells

After successful completion of shell, it sends an ’InitiateNext’ request to the
CategoryHelper to initiate subsequent shells. If the shell is aborted, this class will mark
the shell as aborted.

ShellRootHelper
This is the base class which is required for each shell processing. It Implements the
IBatchHandler Interface. All the batch handlers extend this class.

This class contains the common methods which need to invoked for processing each
shell for example, method to parse the request, methods used to acquire and release
lock for shell, method to initiate the shell and mark the shell as complete upon
successful completion.

BatchFrameworkShellHelper
This SSB extends ShellRootHelper. It is responsible for executing non report Java Bean
based shells. This class will validate the process date of the request, prepare a
BatchContext entity encapsulating the batch run details and call BatchJobHandler to
run the shell.

BatchJobHandler
This class is responsible for putting the stream requests in queue. It will get the Batch
Processes (1 Batch Process per stream) by calling BatchProcessManager and post them
to the Stream Queue.

After posting the stream requests, it will start polling on the status of the streams till
either all streams are completed or any one of the streams is aborted. If the streams are
completed, it will return ’Success’ as the status else it will return the status as ’Failure’.

BatchProcessManager
This component acts as a manager for the complete batch process. The functionalities
include finding the pending batch processes and creating batch processes and
returning the list of batch processes to be initiated.

Batch Framework Components

9-8 Oracle Banking Platform Extensibility Guide

If the shell is being restarted, this class will fetch the aborted batch processes, reset
them and return list of reset Batch Processes to be re-initiated.

If the shell is being started, it will call BatchJobHelper to populate the driver table and
create the batch processes and return the list of batch processes to be initiated.

BatchJobHelper
This class is responsible for populating the driver table and creating the Batch
Processes.

ProcedureShellHelper
This class is used to process DB procedure based shells. This class will fetch the
procedure to be executed from the ’flx_batch_job_shell_master’ table and execute it.

BatchReportShellBean
This class is responsible initiating the generation of reports. It will call
ReportJobRequestor to fetch the reports to be generated, prepare the generation
request and post the requests to the Report Queue.

After the successful posting of requests, the report shell will be marked as complete.
The report generation will be done in parallel to the execution of subsequent shells.

BatchReportRestartShellBean
This class is used for the epilogue shell in each category which has reports generation.

This class will check whether all the reports have been generated or not. This class will
call ReportJobRequestor which will poll on the status of the reports till all the reports
are completed or aborted.

If the aborted reports are to be regenerated, it will also post the messages to regenerate
aborted reports.

9.4.3 Stream Components
This section describes the stream components.

StreamListenerMDB
This MDB is responsible for listening to the stream queue. It delegates the processing
to StreamProcessHelper.

StreamProcessHelper
This class is responsible for starting the batch process. It calls
RecoverableBatchProcess to start the process.

BatchProcess
This component is the base class for processing the batch process. The
StreamProcessHelper calls this class for starting the batch process. This class will
initialize the BatchShellResult, clear the StaticCacheRegistry (if the BatchProcess is the
first BatchProcess of a category), process the BatchProcess, retry the processing of the
BatchProcess (if the earlier failure was due to StaleState or PKDuplication) and finalize
the BatchShellResult status depending on success/failure.

The call to process a batch request is routed through this class to the subclass.

Batch Framework Components

Batch Framework Extensions 9-9

RecoverableBatchProcess
This component processes the batch data and inherits the BatchProcess class. This class
will process all the records in the sequence number range specified in the
BatchShellResult.

This class will fetch the records from the driver table and process them sequentially.

To execute each record, it will call service method of the service class stored in the
BatchShellDetails table using reflection. If there is any exception, it will call the
exception handler method of the service class if the service class implements the
IBatchExceptionHandler interface.

It will commit the transaction at the end of commit size. If all the records are executed
successfully, the stream is marked as complete. If any record fails, the stream is
marked as aborted.

Recoverable Batch Process can handle the failure of a record in the following ways
depending upon the set up.

■ Recoverable Batch Process with Recovery Mode ON

When a record fails, the previous records in the commit size will be committed
and marked as success, the failed record will be marked as failed and the
execution of batch process resumes from the record after the failed record. Hence
in this mode all the successful records are committed and the failed records are
marked as failed.

■ Recoverable Batch Process with Recovery Mode OFF

In this mode, when a record fails the earlier records in the commit size are marked
as skipped for the current run, the failed record is marked as failed and execution
of batch process resumes from the record after the failed record.

Simple Batch Process
While executing the shell as a Simple Batch Process, the stream will be executed till the
first failed record. When a record fails, the previous records in the commit size will be
committed and the shell will be aborted. The records after the failed record will be
skipped in the current run.

SimpleBatchProcess class is no longer used
The functionality of SimpleBatchProcess is executed through RecoverableBatchProcess
by specifying the FLG_PROCESS_TYPE as "SBP" in the flx_batch_job_shell_dtls table.
In the flx_batch_job_shell_dtls table:

■ FLG_PROCESS_TYPE column indicates whether it is RecoverableBatchProcess
(RBP) or SimpleBatchProcess (SBP).

■ FLG_RECOVERY_MODE column indicates whether the Recovery mode is ON or
OFF

■ Simple Batch Process should have Recovery Mode as ON.

Example 9–1

Total Number of records =20;
Commit Frequency = 10
Failed Records = 5, 18

The shell will be executed as follows:

■ Recoverable Batch Process with Recovery Mode ON:

Batch Framework Components

9-10 Oracle Banking Platform Extensibility Guide

– Records 5 and 18 will be skipped and rest all the records will be committed
successfully

■ Recoverable Batch Process with Recovery Mode OFF:

– Records 1 - 5 will be skipped.

– Records 6 - 15 will be committed successfully.

– Records 16-18 will be skipped

– Records 19 - 20 will be committed successfully

■ Simple Batch Process:

– Records 1- 4 will be committed successfully. Rest of the records will be
skipped.

9.4.4 Database Components
The Database Server houses the following components:

Table 9–1 Database Server Components

Batch Framework Tables Description

flx_batch_job_category_
master

This table contains details of each of the category per branch group. This table
contains the description, last run date and the multi run flag for the category. The
status, state flag and the last Run Date for each category is maintained and validated
from this table during batch run.

flx_batch_job_grp_
category

This table contains the previous, current and the next run date for each category per
branch group.

flx_batch_job_category_
depend

This table contains the category dependencies.

flx_batch_job_shell_
master

This table contains details of each shell per branch group. Shell wise status, Last Run
Date, process category and frequency of shell execution are the critical attributes of
this table.

This table will also specify whether the shell is Java Bean based shell or Procedure
Based shell.

flx_batch_job_shell_
depend

This table contains the dependencies of and for each shell in flx_batch_job_shell_
master.

flx_batch_job_shell_dtls This table will contain the details for executing Java Bean Based shell.

flx_<module>_drv_
<action>

This driver table contains the batch execution details for the particular action

flx_<module>_actions_b This table defines the action type, action name and action executor which gets
mapped to the driver table. The action type value is populated as action sequence in
the driver table.

flx_batch_job_shell_
results

This table contains execution details of each stream of each shell for each batch run
per branch group.

flx_batch_job_brn_grp_
mapping

This table will contain the mapping between the branch group and the branches

flx_batch_job_grp_brn_
xref

This table will contain the list of branches for which a category is being run. This
table will be used only when a category is running.

Batch Configuration

Batch Framework Extensions 9-11

9.5 Batch Configuration
The following section defines the configuration which needs to be done in order to
create a new category or add a new batch shell for batch execution using the batch
framework.

9.5.1 Creation of New Category
The following steps explain the creation of new category:

1. Create an entry in flx_batch_job_category_master:

This contains the new category name and category code along with branch group
code to be defined here.

2. Create an entry in flx_batch_job_grp_category:

This contains branch group code, new category code, bank code and dates relating
to run the category.

3. Create an entry in flx_batch_job_category_depend (if required):

This table will contain the category dependency. If the category does not depend
on any other category, no entry in this table is required.

Table 9–2 FLX_BATCH_JOB_CATEGORY_MASTER

Columns Description

DAT_EOD_RUN This column specifies the date on which the category was last run

COD_EOD_STATUS This column specifies the Status of the last category run. 0 - Successful Completion ; 1
- The process was aborted after start

COD_PROC_CATEGORY This column specifies the category code. 1 - EOD, 2 - BOD etc. Any number of
process categories can be defined

FLG_MULTI_RUN This column specifies whether this category can be run multiple times. 0 - Multi-Run
is disabled; 1 - Multi-Run is enabled.

FLG_EOD_STATE This column specifies the flag indicating the state of the category. R - Running ; C -
Completed (i.e. not running)

TXT_CATEGORY This column specifies the category description

COD_BRANCH_
GROUP_CODE

This column specifies the code of the Branch Group of the category

OBJECT_VERSION_
NUMBER

This column specifies the version number of the category

NAM_PROD_REP_DB This column mentions about the database repository

Table 9–3 FLX_BATCH_JOB_GRP_CATEGORY

Columns Description

BRANCH_GROUP_
CODE

This column specifies the Branch Group Code

COD_PROC_CATEGORY This column specifies the procedure category

DAT_LAST_PROCESS This column specifies the date on which the category was last run

DAT_PROCESS This column specifies the current date of the category

DAT_NEXT_PROCESS This column specifies the next date of the category

Batch Configuration

9-12 Oracle Banking Platform Extensibility Guide

4. Create bean or procedure based shells:

New shells (bean/procedure based, as shown in the section below) are created and
linked to the category by populating the cod_proc_category column in those tables
with the new category code created in the flx_batch_job_category_master.

5. Add enumeration:

In the middleware code, add an enum value in the ProcessCategoryType.java for
the category.

6. Add category code in the property file:

In the middleware code, add the entry for the category in the
ProcessCategoryType_en.properties file.

7. Middleware Changes

If any validations required or any dependency on other categories we can make
changes in EODShellProgressManager.java file accordingly.

Table 9–4 FLX_BATCH_JOB_CATEGORY_DEPEND

Columns Description

COD_PROC_CATEGORY This column specifies the procedure category

COD_BRANCH_
GROUP_CODE

This column specifies the branch group code

COD_PROC_REQD_
CATEGORY

This column specifies the dependency of the required procedure category which
needs to be run before this category

COD_PROC_
VALIDATION_DATE

This column defines the validation time. It can be Current/Previous.

Batch Configuration

Batch Framework Extensions 9-13

Figure 9–5 Creation of New Category

9.5.2 Creation of Bean Based Shell
In this batch execution (Type "B"), the business logic is provided in the service method
of the java class.

1. Create an entry for Shell Parameters in the table FLX_BATCH_JOB_SHELL_
MASTER.

Table 9–5 FLX_BATCH_JOB_SHELL_MASTER

Columns Description

COD_EOD_PROCESS Process code. This is the name of the program module that will be started as a
process by the EOD monitor.

TXT_ PROCESS Process name to be displayed in the new UI screen

FRQ_PROC Frequency at which this process is to be run.

1 - Daily 2 - Weekly 3 - Fortnightly 4 - Monthly 5 - Bi-monthly 6 - Quarterly 7 -
Half-yearly 8 - Yearly.

COD_PROC_STATUS Process Status Code 0 - Complete 1 - Started 2 - Not Started 3 - Aborted 4 -
Prerequisite Aborted 5 - Prerequisite Absent

NUM_PROC_ERROR Last error returned by this process

FLG_RUN_TODAY Flag indicating whether process to be run today Y/N

COD_PROC_CATEGORY Category code to which this shell belongs to e.g.: 1 - EOD, 2 - BOD and so on.

Batch Configuration

9-14 Oracle Banking Platform Extensibility Guide

2. Create an entry for Shell Details in the table FLX_BATCH_JOB_SHELL_DTLS.

This table contains the following parameters;

SERVICE_KEY Service method to be executed

NAM_COMPONENT Name of the Procedure (if procedure based batch execution) or fully qualified class
name of the Batch Handler (if bean based).

1. com.ofss.fc.bh.batch.BatchFrameworkShellHelper - java bean based shell

2. com.ofss.fc.bh.batch.BatchReportShellBean - procedure based shell for reports

3. com.ofss.fc.bh.batch.BatchReportRestartShellBean - procedure based for report
epilogue shell

TYPE_COMPONENT This indicates whether the specified nam_component is Java class or Function. P
stands for Function and B Stand for the Java Class.

NAM_DBINSTANCE The DB instance for PROD or REP(reports)

COD_BRANCH_
GROUP_CODE

Specifies the branch group code that a branch is part of.

OBJECT_VERSION_
NUMBER

This column specifies the version number of the category

Table 9–6 FLX_BATCH_JOB_SHELL_DTLS

Columns Description

COD_SHELL A unique code for batch shell.

SHELL_NAME Provide a name to batch shell

SHELL_DESCRIPTION Description about the batch shell

COMMIT_FREQUENCY Provide the commit frequency thus, after every this no of records have been
processed the framework would commit those set of records

FLG_RECOVERY_MODE Flag indicating whether recovery mode is ON or OFF. Possible values are 'Y' and 'N'
only. This would be only used by Batch Processes which support recovery mode
functionality but there might be batch processes which would ignore this flag (e.g.:
SBP)

FLG_STREAM_TYP Define the type of stream for the batch shell. This would have three possible values
('S' - fixed no of streams, 'R' - fixed no of rows, 'N' - no streams)

STREAM_COUNT Define the no of streams to be created for the batch shell. This is only applicable if the
StreamType is marked as 'S' or 'R'

INPUT_DRV_NAME Define the fully classified class name mapped to the driver table

INPUT_SHELL_PARAM Define the name for the shell parameter

SERVICE_CLASS_NAME Define the fully classified class name for the service class. This class is the starting
point of the business logic execution.

In case of service class name as ActionSetProcessor, the action sequence column is
populated in the driver table. The execution is done corresponding to those actions

SERVICE_METHOD_
NAME

Define only method name of the service. The service method should have input
parameter as driver table entity

DRV_POP_PROC_NAME Defines the name procedure used for driver table population. The procedure should
have three input parameters branch group code, process date and next process date.
Use only procedures instead of packages for data population. Because db2 will not
support Package

Table 9–5 (Cont.) FLX_BATCH_JOB_SHELL_MASTER

Columns Description

Batch Configuration

Batch Framework Extensions 9-15

3. Create an entry for Shell Execution Order in the table FLX_BATCH_JOB_SHELL_
DEPEND.

If the shell is not dependent on any other shell or category then no need to keep an
entry in this table.

4. Create a new driver table (the name of the table prefix by FLX_<ModuleCode>_
drv_<>) for the Batch Shell. This is the table from which the data will be picked up
for processing by the defined batch process. This table should be populated by the
procedure written for population of the driver table. This table would contain the
following parameters:

FLG_PROCESS_TYPE It defines the type of process RBP or SBP. In RBP (Recoverable Batch Process) if any
records fails in batch it will continue and execute rest of the records in the stream. But
in case of SBP (Simple Batch process) it will abort the stream

HELPER_CLASS_NAME It defines the helper class for caching big queries

BATCH_NO Indicates the batch number for the shell

Table 9–7 FLX_BATCH_JOB_SHELL_DEPEND

Columns Description

COD_EOD_PROCESS Process code This is the name of the program module that will be started as a process
by the EOD monitor

COD_REQD_PROCESS Required process code after which the framework will run process code

COD_PROC_CATEGORY Category of the Process Code. 1 - EOD, 2 - BOD and so on.

COD_REQD_PROC_CAT Category of the required process code. 1 - EOD, 2 - BOD and so on.

COD_BRANCH_
GROUP_CODE

This column specifies the branch group code

Table 9–8 Driver Table

Column Description

DATE_RUN Defines the date on which the batch job was run (process date).Value in this column
needs to be populated by the driver table population procedure.

SEQ Sequence no for the data present in the table i.e. simple sequence from 1 to maximum
number of records present in table. Value in this column needs to be populated by the
driver table population procedure.

PROCESS_RESULT Define the column which would contain the result of processing of each record of this
table. This column would be updated the framework with values 0,1, 2,3 or 4
indicating not processed, processing of record successful, failed with business
exception , failed with framework exception or failed with SQL exception
respectively.

ERROR_CODE Define the column for error code. This would be updated the framework with the
error code returned by the processing logic (currently updating the exception if any
occurred).

BRANCH_CODE Attribute specifies the branch code in which the shell is executed

BRANCH_GROUP_
CODE

Attribute specifies the branch group code that a branch is part of.

Table 9–6 (Cont.) FLX_BATCH_JOB_SHELL_DTLS

Columns Description

Batch Configuration

9-16 Oracle Banking Platform Extensibility Guide

5. Add the entry of the action in the actions table (FLX_<ModuleCode>_actions_b)
for the shell where the service method is defined as ActionSetProcessor in the
details table. This table would contain the following parameters, for example, flx_
td_actions_b

6. Create a procedure (the name of the proc prefixed with ap_<Module Code>_pop_
drv) which would populate the data in the driver table, created above. This
procedure would be called at the first time when the Batch shell is run. The
procedure will have only three arguments branch group code, process date and
next process date. e.g.: ap_in_pop_drv_eod_actions

7. Create an entity which extends AbstractBatchData and map this entity to the
driver table. This entity name would be the one which will carry the data to be
processed for batch processing. This should be provided in the InputDataName
column of flx_batch_job_shell_dtls table. e.g.: InterestEODActionSetBatchData

ERROR_DESC Attribute specifies error description. This will populated by the batch framework in
case the record aborts

ACTION_SEQUENCE
(Optional)

In case of service action as ActionSetProcessor, the batch execution is done through
the executor framework defined in the action table of the module. The details of this
action table in mentioned below.

If user want to execute multiple actions, then the comma separated action_type can
be defined in this column. They will be executed based on the defined priorities.

<Custom_Columns> Define the other columns required which would contain the data required by the
processing logic. Typical examples would be a column containing accountNo (if the
main logic is per account) or customerId or txnRefNo etc. We can have multiple such
columns which are used for per record processing for e.g. we can have two columns
branchCode, accountNo.

Note: DATE_RUN, SEQ, BRANCH_GROUP_CODE columns are
part of the Unique key. e.g.: flx_in_drv_eod_actions

Table 9–9 Actions Table

Column Description

ACTION_TYPE Stores the type of action to be performed. The defined action type is populated in the
action sequence column of the driver table.

ACTION_LEVEL Stores the action level of the action as 0,1,2 based on the execution status.

PRIORITY Stores the priority of the action.

ENTITY_STATUS Stores the status of the entity.

ACTION_NAME User friendly name of the action.

ACTION_DESC Stores the description of the action.

ACTION_EXECUTOR Stores the name of the action executor which needs to be executed when the service
action is populated as ActionSetProcessor.

HOLIDAY_TREATMENT Stores the holiday treatment of the action.

HOLIDAY_EPOCH_TYPE Stores the holiday epoch type of the action.

Table 9–8 (Cont.) Driver Table

Column Description

Batch Configuration

Batch Framework Extensions 9-17

8. Map the entity to the driver table in the hbm. The entity attributes should
represent only Extra columns added in the driver table. They shouldn't be mapped
to the seq, date_run, error_code, process_result columns. For example,
InterestEODActionSet.hbm.xml

9. Make additions in batch-mapping.cfg file for the new hbm entities created for
BatchData. For example, account-mapping.cfg.xml

10. Create Helper Class for caching big queries in Application layer. The fully
qualified class name of the helper class needs to be defined in the HELPER_
CLASS_NAME column of the FLX_BATCH_JOB_SHELL_DTLS table. For
example, InterestEODActionSetBatchDataHelper.java

11. Create a service processor class with the service method which processes the
batch application. For example, ActionSetProcessor

The fully qualified class name of this service processor class need to be defined in
the SERVICE_CLASS_NAME column of the FLX_BATCH_JOB_SHELL_DTLS
table.

This processing method defined in this class should be specified in the SERVICE_
METHOD_NAME column of the FLX_BATCH_JOB_SHELL_DTLS table.

The service method should have two input arguments - ApplicationContext and
AbstractBatchData.

If the shell needs to handle the batch exceptions, the service processor class should
implement IBatchHandler interface.

9.5.3 Creation of Procedure Based Shell
In this batch execution (Type "P"), the business logic is provided in the Stored
Procedures.

1. Create an entry for Shell Parameters in the table FLX_BATCH_JOB_SHELL_
MASTER. Same as described in the above section.

2. Create an entry for Shell Execution Order in the table FLX_BATCH_JOB_
SHELL_DEPEND. Same as briefed in the above section if there is any dependency
with any other shell.

3. Create a function in Database which contains the Business logic. This function will
be used for batch procedure based execution and the signature of the function
must have the arguments as shown in the example:

CREATE OR REPLACE FUNCTION ap_as_batch_verify
 (var_pi_cod_brn_grp_code VARCHAR2,
 var_pi_cod_user_no NUMBER,
 var_pi_cod_user_id VARCHAR2,
 var_pi_dat_process DATE,
 var_pi_nam_bank VARCHAR2,
 var_pi_cod_stream_id NUMBER,
 var_pi_cod_eod_process VARCHAR2,
 var_pi_cod_proc_category NUMBER) RETURN NUMBER AS
VAR_L_RETCODE NUMBER;
BEGIN
 VAR_L_RETCODE := 0;

Note: The above steps would suffice for creating a batch shell to be
run using the new Batch Framework. The Results of the shell will be
present in the FLX_BATCH_JOB_SHELL_RESULTS table.

Batch Configuration

9-18 Oracle Banking Platform Extensibility Guide

-----------------------------1. Init Restart---------------------------
 BEGIN
 plog.error('var_pi_dat_process : ' || var_pi_dat_process);
 var_l_ret_code := ap_ba_init_restart(var_pi_cod_eod_process,
 var_pi_cod_brn_grp_code,
 var_pi_cod_proc_category);
 IF (var_l_ret_code != 0) THEN
 BEGIN
 IF (var_l_ret_code = -2) THEN
 RETURN var_l_ret_code;
 ELSE
 ora_raiserror(SQLCODE, 'Error in executing Init Restart ', 53);
 RETURN 95;
 END IF;
 END;
 END IF;
 END;
-------------------------------2.Bisuness Logic-------------------------
...we can write a piece of code …or a new proc which contain all the business
logic...
---------------------------------3.Finish Restart-----------------------
 BEGIN
 var_l_ret_code := ap_ba_finish_restart(var_pi_cod_eod_process,
 var_pi_cod_brn_grp_code,
 var_pi_cod_proc_category,
 var_pi_dat_process);
 IF (var_l_ret_code != 0) THEN
 ora_raiserror(SQLCODE, 'Error in executing Finish Restart ', 76);
 RETURN 95;
 END IF;
 END;
 --
 return 0;
EXCEPTION
 WHEN OTHERS THEN
 ora_raiserror(SQLCODE,
 'Execution of ap_as_batch_verify Failed',
 37);
 RETURN 95;
END;/

9.5.4 Population of Other Parameters
The following procedures describe the population of other parameters:

1. Create database credential details for Lock Connection in the jdbc.properties file

Figure 9–6 Population of Other Parameters

2. Create datasource on the host server where the batch needs to be executed

Batch Configuration

Batch Framework Extensions 9-19

Figure 9–7 Population of Other Parameters - General Tab

Figure 9–8 Population of Other Parameters - Connection Pool

3. Enable Node Affinity for Batch Processing (Optional)

This feature can be used for Clustered Database environment. In this feature
connections taken by threads are pinned to a particular database node explicitly in
order to reduce Cluster Wait events.

Batch Execution

9-20 Oracle Banking Platform Extensibility Guide

4. To enable this feature, set IS_DB_RAC = true in jdbc.properties file and specify the
number of DB nodes.

Figure 9–9 Population of Other Parameters - Set IS_DB_RAC

5. Create a separate data for each node in the cluster. Each of these connections will
have the IP of an individual node instead of the SCAN-IP. Specify the data source
configuration per node in the cluster in jdbc.properties.

Figure 9–10 Population of Other Parameters - Specify Data

9.6 Batch Execution
The user can execute the batch process from the task code EOD10 screen. User needs to
select the process category, job type and job code. The corresponding shells get
populated in the table below which can be started by clicking on the start/restart
button.

User can also monitor the performance by clicking on the Refresh button available in
the Category Details section. The execution of the batch takes care of shell
dependencies and the dependent shells are run once their dependencies are executed.

Batch Execution

Batch Framework Extensions 9-21

Figure 9–11 Batch Execution

Batch Execution

9-22 Oracle Banking Platform Extensibility Guide

10

Uploaded File Data Processing 10-1

10Uploaded File Data Processing

In Banks, there are multiple times when the bulk load of data is available in the form
of files which needs to be uploaded and processed in the banking application. An
example for the same can be salary credit processing. The salary credit data is
provided by the organizations in the form of files where employer account needs to be
debited and the multiple accounts of the employees needs to be credited for the
provided data in the files.

In OBP, file upload and file processing are two independent processes where the
upload of file is done as one process and the processing on the uploaded data is done
as another process. Every upload provides a unique field for the uploaded file. The
processing is then done for each uploaded file and the final status is then provided at
the end of the processing in the form of ProcessStatus.

The below section, from the extensibility perspective, provides the detailed
understanding of the steps involved in the business logic processing of the files once
the files are uploaded from the upload services. After the upload of the data, the data
gets populated in the temporary tables in the database with the unique file id, which is
then used for the processing of the uploaded file for the required business logic.

In the above mentioned salary credit example, the employer account details (in the
form of header records) and the multiple employee account details (in the form of
detail records) can be uploaded in OBP through the file upload, functionality which
can then be processed for debiting the employer account and crediting the multiple
salary accounts of the employees.

The framework of the uploaded file processing is shown in the sequence diagram
below:

Configuration

10-2 Oracle Banking Platform Extensibility Guide

Figure 10–1 Uploaded Data File Processing Framework

From the implementation perspective, the following sections describe the
configuration and processing of uploaded file.

10.1 Configuration
The configuration part of the uploaded file processing requires definition of the
following components.

10.1.1 Database Tables and Setup
In case of file processing, there is one master table and individual record process tables
for the recordType.

Configuration

Uploaded File Data Processing 10-3

■ FLX_EXT_FILE_UPLOAD_MAST

■ FLX_EXT_<<Process>>_HEADERRECDTO e.g. FLX_EXT_SALCREDIT_
HEADERRECDTO

■ FLX_EXT_<<Process>>_DETAILRECDTO e.g. FLX_EXT_SALCREDIT_
DETAILRECDTO

The field and record Id together as the key forms the record identifier in the record
tables. The mandatory fields in the record tables are mentioned below. The
additional required fields should be defined as the additional columns in the
record tables.

Table 10–1 FLX_EXT_FILE_UPLOAD_MAST

Column Name Description

COD_FILE_ID This defines the primary key identifier as file id for each specific file.

COD_XF_SYSTEM This identifies the system to which the file type is associated. This indicates that the
file is received from or sent to the particular system indicated by the system code.

FILE_TYPE This identifies the type of file that is being uploaded. For every file type the format is
defined. The file type can be like TXN

NAM_HOFF_FILE Name of the uploaded file.

TXT_NRRTV File Narration for the uploaded file.

COD_ORG_BRN This stores the originating branch code from where the file is uploaded.

CTR_BATCH_NO This identifies the batch number of the file upload. This is generated internally.

DAT_FILE_PROCESS The process date as specified while uploading a file.

COD_FILE_STATUS Indicates the current status of the file.

DAT_FILE_UPLOAD Indicates when the file was uploaded.

DAT_TIM_PROC_START The start time indicates the time the processing starts.

DAT_TIM_PROC_END The end time indicates the time the processing ends.

DAT_FILE_REVERSE Indicates when the file was reversed.

CTR_TOTAL_REC This value indicates the total records in the file.

CTR_PROCESS_REC This Value indicates the number of records processed for a file.

CTR_REJECT_REC This Value indicates the number of records rejected for a file.

FILE_SIZE This value indicates the size of the file in bytes.

COMMENTS The file Comments for the uploaded file if the processing fails

FILE_CHECK_SUM This column is used to store check sum of the file

FROM_ODI This flag is used to indicate whether upload is happening from ODI

CURR_RECORD_TYPE This column denotes the current record type being processed, updated after every
recordType is successfully processed

Configuration

10-4 Oracle Banking Platform Extensibility Guide

■ FLX_EXT_FILE_PARAMS

This table contains the information about the file definition template which is used
to define the handlers, DTO and other details required for the processing of the
uploaded file.

Table 10–2 Mandatory Fields in Record Tables

Column Name Description

RECORDID This defines the primary key identifier as record id in the table. This is generated for
every record.

FILEID This is the primary key identifier as file id for the specific file.

RECORDTYPE The type of record; possible values 'H', 'D' and 'F'

RECORDNAME Name of the record type; possible values 'Header', 'Detail' and 'Footer'

DATA Stores the complete data of each row of the file. This is populated for inquiry
purposes that the user can view the contents of the record as it was read from the file.

LENGTH Total length of DATA. This value is populated after the record is parsed.

COMMENTS Comment update at the time of GEFU Upload and Processing of record

RECORDSTATUS List of Record Status : 1-UPLOADED, 2-FAILED_UPLOAD, 3-CANCELLED,
4-INPROGRESS, 5-PROCESSED, 6-FAILED_PROCESS, 7-REVERSED, 8-FAILED_
REVERSED, 9-ABORTED, 10-MARKED_FOR_PROCESS

DATE_RUN This column holds the value of batch job's run date

SEQ This column holds the value of batch job's sequence number

PROCESS_RESULT This column holds the value of batch job process result

ERROR_CODE This column holds the value of batch job's error code

ERROR_DESC This column indicates the Error Description

BRANCH_CODE This column holds the branch code of the branch

BRANCH_GROUP_
CODE

This column holds the value of branch Group code

Table 10–3 FLX_EXT_FILE_PARAMS

Column Name Description

COD_XF_SYSTEM This identifies the system to which the file type is associated. This indicates that the
file is received from or sent to the particular system indicated by the system code.

FILE_TYPE This identifies the type of file that is being uploaded. For every file type the format is
defined. The file type can be like TXN

NAM_XF_SYSTEM Name of the system to which the file type is associated. This indicates that the file is
received from or sent to the particular system indicated by the system code.

NAM_FILE_TYPE This is name of the type of file that is being uploaded. For every file type the format
is defined. The file type would be like PYMT (Payment File) or SAL (Salary Upload).

NAM_UPLOAD_TMPL XFF file definition template name

FLG_OUTPUT_REQD Once the processing of all the records is complete, a check is made if its value is 'Y'
and then the response file is generated accordingly.

FLG_FILE_
TRANSACTIONAL

Used to decide, whether File level validation is required or not.

CTR_COMMIT_SIZE Used to commit records in batch while processing, so it's the batch size.

Configuration

Uploaded File Data Processing 10-5

■ FLX_BATCH_JOB_SHELL_DTLS

This table contains the information about the batch processing with bean based
shell mechanism as described in the 'Batch Framework Extension' section. The
sample values are provided below:

RELATIVE_PATH If provided, this searches for xff file in the path: base_folder/folder_name_
mentioned_here.

COD_ADHOC_
REQUEST_CLASS

Adhoc request class name

CTR_UPLOAD_
COMMIT_SIZE

Used to commit records in batch while validation, so it's the batch size.

FLAG_DUPLICATE_
FILE_CHECK

This flag is used to indicate whether duplicate file check is required or not

FLAG_FROM_ODI This flag is used to indicate whether upload is happening from ODI

Table 10–4 FLX_BATCH_JOB_SHELL_DTLS

Columns Description Sample Values

COD_SHELL A unique code for batch shell. For
example, 'upld_batch_shell_
<ProcessType>'

upld_batch_shell_SalCredit

SHELL_NAME Name for batch shell GEFU Processing Shell For Salary Credit

SHELL_
DESCRIPTION

Description about the batch shell. GEFU Processing Shell For Salary Credit

COMMIT_
FREQUENCY

Commit frequency 100

FLG_RECOVERY_
MODE

Recovery mode - ON / OFF Y

FLG_STREAM_TYP Type of stream : 'S' - fixed no of streams,
'R' - fixed no of rows, 'N' - no streams

S

STREAM_COUNT No of streams for the batch shell.
Applicable only for StreamType as 'S' or
'R'

2

INPUT_DRV_NAME Fully classified class name mapped to the
driver table

com.ofss.fc.entity.upload.AbstractRecordDT
O

INPUT_SHELL_
PARAM

Name for the shell parameter AbstractRecordDTO

SERVICE_CLASS_
NAME

Fully classified class name - starting point
of the business logic execution

com.ofss.fc.upload.processor.batch.BatchReco
rdProcessor

SERVICE_
METHOD_NAME

Method name of the service processRecord

DRV_POP_PROC_
NAME

Defines the name procedure used for
driver table population

ap_gefu_pop_drv_gefu_rec

Table 10–3 (Cont.) FLX_EXT_FILE_PARAMS

Column Name Description

Configuration

10-6 Oracle Banking Platform Extensibility Guide

10.1.2 File Handlers
File Handler class is written for processing of the uploaded file and should extend the
AbstractFileHandler. The class name of the File Handler is mentioned in the File
Definition XML. In this class, the following abstract methods should be implemented:

■ isValid() : To check if the particular uploaded file is valid. Validations such as, is
the file uploaded duplicate or not, or are the header details valid or not are done as
part of file level validations.

■ processFile() : To write the actual processing business logic where the functionality
is implemented, if required, or else a default blank implementation is executed.

FLG_PROCESS_
TYPE

RBP (Recoverable Batch Process) if any
records fails in batch, it will continue and
execute rest of the records in the stream
or SBP (Simple Batch process) it will
abort the stream

RBP

HELPER_CLASS_
NAME

Helper class for caching big queries com.ofss.fc.upload.processor.batch.GEFUBatc
hJobHelper

BATCH_NO Batch number for the shell 1

Table 10–4 (Cont.) FLX_BATCH_JOB_SHELL_DTLS

Columns Description Sample Values

Configuration

Uploaded File Data Processing 10-7

Figure 10–2 File Handlers

10.1.3 Record Handlers for Both Header and Details
This class provides the methods for record level validations and processing. It should
extend the AbstractRecordHandler. The class name of the Record Handlers are also
mentioned in the File Definition XML. The following abstract method needs to be
implemented in this class:

■ isValid() : To check if the particular uploaded record is valid for the processing
purpose

■ process() : To write the actual processing business logic where the functionality is
implemented. It is called once the file is successfully validated.

Configuration

10-8 Oracle Banking Platform Extensibility Guide

Figure 10–3 Record Handlers for Both Header and Details

10.1.4 DTO and Keys Classes for Both Header and Details
This is a persistent class for the particular process. This class provides the fields which
represents the characteristics of the record data. This class is defined for each record
type of a file.

Configuration

Uploaded File Data Processing 10-9

Figure 10–4 DTO and Keys Classes for Both Header and Details - HeaderRecDTOKey

Configuration

10-10 Oracle Banking Platform Extensibility Guide

Figure 10–5 DTO and Keys Classes for Both Header and Details - AbstractDTORec

10.1.5 XFF File Definition XML
The xff file contains all the information about the different record type DTOs, the fields
in those DTOs and the handlers pertaining to the uploaded file. The name of the xff
file is mentioned in the FLX_EXT_FILE_PARAMS table. The file details are read from
each tag in xff file and interpreted as described below in the table. The record element
can occur N number of times based on number of record types present, for example if
a particular upload has three record types Header, Detail and Trailer then there will be
three elements for Record, each describing the three record types.

There are two one-to-many relationship in the file definition xml file:

■ One ’File’ element can have many ’Record’ elements, depending upon the number
of recordType present for this upload.

■ One ’Record’ element can have many ’Field’ elements, depending upon the
number of fields present for this recordType of upload.

Configuration

Uploaded File Data Processing 10-11

Table 10–5 XXF File Definition XML

Elements Attributes Description

File Contains all details about the FileHandler, there is only once
occurrence of this element.

fileName This denotes logical name of the file

validationClassName Fully qualified name of the FileHandler class

encryptionClass This denotes the name of the class that is used for encryption
(optional).

charSet This denotes the Charset of the file.

delimiter This denotes delimiter coming in the file.(optional)

comments This is used to store comment on the file.(optional)

lengthInBytes This Boolean variable is used to denote whether the file's length has
to be calculated in bytes.

xffSystem Name of xff file system, name should be same as mentioned in COD_
XF_SYSTEM in table FLX_EXT_FILE_PARAMS

fileType Name of file type, name should be same as mentioned in FILE_TYPE
in table FLX_EXT_FILE_PARAMS

Record Child element of "File" can have any number of occurrences
depending upon number of RecordType for a particular Upload.

recordHandlerClassName Fully qualified name of the Handler class for this RecordType

recordType This denotes record type which can be "Header", "Detail" or "Trailer"

streamingAllowed Indicates if the streaming is allowed for the record; Possible values
are true or false

dtoClassName Name of DTO for this particular recordType

recordName Name of this record.

multiplicity This denotes whether this record type will appear only once in the
file or multiple times. Value of this field will be either 1 (for only
once) or -1 (for multiple times)

maxFields This denotes the maximum number of fields coming in the record
type.

comments This stores comments.(optional)

maxLogicalRecords This denotes maximum number of records that may come of this
record type.

parent

lastFieldOfVariableLength This denotes whether the last field of the record is variable or not.
This value can be either "true" or "false"

Field Child element of "Record" can have as many occurrences as the
number of fields in a particular recordType

name Name of the field

type This denotes field type. E.g.:- 'CHAR', 'NUMBER' and so on.

length Length of field

format This denotes format of the field

recordIdentifier This denotes whether this field is used to identify the record. Value of
this field can be either true or false.

nullable This denotes whether this field can be null or not

Processing

10-12 Oracle Banking Platform Extensibility Guide

Figure 10–6 XXF File Definition XML

10.2 Processing
Processing of an uploaded file is done on two levels, one on file level and the other on
Record level. The processing is initially triggered when a message is sent on to a JMS
Queue. The message is then picked up by an MDB which parses the message into a
key value pair, and then passes it on to the FileProcessor by passing the processor type
as an input. Based on the processor type, that is, header or detail record, the file
processor initiates respective processing by invoking specific business logic written as
file or record level handlers.

The processing of the business logic to different Service APIs of different modules are
carried in the handler classes of the records. The processForRecordType() method of

defaultValue Default value of this field if any.

comments This stores the comment on the field. (optional)

crossReferenceID If another field wants to refer to this field then this id will be used.

Table 10–5 (Cont.) XXF File Definition XML

Elements Attributes Description

Processing

Uploaded File Data Processing 10-13

the FileProcessor invokes the respective handler classes that is, if the Header section is
being processed, it invokes the HeaderHandler class.

As per the process, the headers are processed first and then the details records. Each
and every record is processed individually. As soon as a file is picked for processing,
its status is changed to InProgress so that the same file is not picked by any other
process for processing. Individual records are processed based on its record type.

10.2.1 API Calls in the Handlers
The API calls of different exposed application services are called from the handlers.
The respective method call from the adapter will return the response object which can
be further used for another adapter call as the input value or for the validation
purpose. In the following example, it is shown that the salary account is debited for
the user and then the returned response summary is used for validation purpose
before raising the accounting for that account.

<Response1>=Adapter1.<method call>(<method parameters>)
If(<Validation on Response1>) {
<Response2>=Adapter2.<method call>(<method parameters containing Response1>) }
Example:
executionResponse = adapter.debitSalaryAccount()
if(executionResponse.getSummary().getIsSuccessful()) {
adapter.raiseAccounting(); }

Processing

10-14 Oracle Banking Platform Extensibility Guide

Figure 10–7 API Calls in Adapters

10.2.2 Processing Adapter
The processing adapters needs to be implemented for invoking the required
application service API. In the example, the new methods as creditSalaryAccount(),
debitSalaryAccount() and raiseAccounting() are implemented by the user based on
their requirements.

Outcome

Uploaded File Data Processing 10-15

Figure 10–8 Processing Adapter

10.3 Outcome
In case of header or footer, there is only one Record for these record types, hence
based on Record Level Status returned, the processing status is set, if
RecordLevelStatusType is SUCCESS or WARNING, the PROCESSING_STATUS will
be marked as SUCCESS else FAILURE.

In case of detail records, processing status is decided based on the criteria that is, if
NumberOfRecords with record processing status as FAILED is equal to
totalNoOfRecords then overall ProcessStatus is FAILED or if less than
totalNoOfRecords then overall ProcessStatus is WARNING and if zero then overall
ProcessStatus is SUCCESS. Also, in case there is error in insertion of any record to the
working table then overall ProcessStatus is FAILED.

Each record on processing can have any one of the three process status. If process
status is success it moves to the next record. If process status is warning then it moves
to the next record but marks the record as failed. If process status is failure then an
Exception is raised and the file is marked as Failed.

Failure/Exception Handling

10-16 Oracle Banking Platform Extensibility Guide

On successful processing, the record will get persisted into the respective table and
return a status of '5' to the invoked method.

But, in case of failure, the status is returned as '6' for that particular record and it
continues with the next record for processing. Also the exceptions raised during a
failure can be appended into the "comments" column of the respective table.

10.4 Failure/Exception Handling
There can be processing failure in case of any validations failure caused by the service.
In case of any exceptions raised, it will be handled in the handler class.

While invoking an API when the SessionContext variables are not passed properly it
would result in null. ’Invalid user id’ will be added in the comments column and the
processing will not happen.

The exceptions raised during processing can be logged into the comments column of
the respective table by calling the setErrorMessage() method. In case of process failure
in file handling, this method can also be invoked from inside the catch block of the
processFile() method:

this.setErrorMessage(errorMessage);
processStatus = ProcessStatus.FAILURE;

Table 10–6 Process Status

Status Name Value Description

SUCCESS 0 Processing of this record is a success. Further record processing should continue.

FAILURE 1 Processing of this record has failed. Further record processing should not continue.

WARNING 2 Processing of this record has failed. Further record processing should continue.

11

Alerts Extension 11-1

11Alerts Extension

OBP has to interface with various systems to transfer data which is generated during
business activities that take place during teller operations or processing. OBP
Application is, therefore, provided with the framework which can support on-line data
transfer to interfacing systems.

The event processing module of OBP provides a mechanism for identifying executing
host services as activities and generating or raising events that are configured against
the same. Generation of these events results in certain actions that can vary from
dispatching data to subscribers (customers or external systems) to execution of
additional logic. The action whereby data is dispatched to subscribers is termed as
Alert.

The following sections provides an overview of what the developer needs to do in
order to add a new Activity and an Event which will be raised on execution of the said
that activity. We will be using a sample activity and event to illustrate the steps.

Use Case: In the Party -> Contact Information -> Contact Info screen, user can create or
update the contact details for a party. This screen has many attributes like telephone
number, email, do not disturb info and so on. We will be registering this update
transaction as an Activity and creating Events which will be raised on this activity.

11.1 Transaction as an Activity
This section describes how existing or new online transactions can be supported and
recognized as activity for the events that are setup in the system with action,
subscriber and dispatch configuration already in place. A transaction can be either
financial or maintenance executing in the application server middleware host
environment. This kind of setup is particularly useful when we have external systems
like CEP, BAM to which data needs to be dispatched online.

The procedure for creating activities and events for a financial transaction is a subset of
the same for a maintenance transaction. The aforementioned use case describes a
maintenance transaction.

11.1.1 Activity Record
You will need to create a record for the activity in the table FLX_EP_ACT_B which
stores all the recognized activities. This table has the following columns:

Transaction as an Activity

11-2 Oracle Banking Platform Extensibility Guide

Sample script for Activity Record:

Figure 11–1 Sample script for Activity Record

11.1.2 Attaching Events to Activity
Recognized events can be attached to recognized activities. The mapping in this case
can be many-to-many viz., an activity can raise multiple events and an event can be
raised by multiple activities.

11.1.3 Event Record
You will need to create an event record in the table FLX_EP_EVT_B which stores all
the recognized events. This table has the following columns:

Table 11–1 FLX_EP_ACT_B

Column Name Use Example

COD_ACT_ID The unique activity id for the activity. This
id will be used in the activity - event
mapping as well

'com.ofss.fc.app.party.service.contact.ContactPoi
ntApplicationService.updateContactPoint.dndIn
fo'

TXT_ACT_NAME Activity name 'ContactPointApplicationService.updateContact
Point.dndInfo'

TXT_ACT_DESC Meaningful description of the activity 'DND Info Change'

MODULE_TYPE Module code for the module of which the
transaction is a part off

'PI'

CREATED_BY User id of the user creating this record 'SYSTELLER'

CREATION_
DATE

Creation date of this record to_date('20110310', 'YYYYMMDD')

LAST_
UPDATED_BY

User id of the user last updating this
record

'SYSTELLER'

LAST_UPDATE_
DATE

Last update date of this record to_date('20110310', 'YYYYMMDD')

OBJECT_
VERSION_
NUMBER

Version number of this record 1

OBJECT_STATUS Status of this record 'A'

Transaction as an Activity

Alerts Extension 11-3

Sample script for Event Record:

Figure 11–2 Sample script for Event Record

11.1.4 Activity Event Mapping Record
You will need to create an activity event mapping record in the table FLX_EP_ACT_
EVT_B which stores the mapping between all activities and events. This table has the
following columns:

Sample script for Activity Event Mapping Record:

Figure 11–3 Activity Event Mapping Record

Table 11–2 FLX_EP_EVT_B

Column Name Use Example

COD_EVENT_ID The unique event id for this event. This id will be used in the
activity - event mapping as well

'PI_UPD_DND_INFO'

TXT_EVENT_
TYP

The type of event 'ONLINE'

TXT_EVENT_
DESC

Meaningful description for the event 'DND Info Updated'

EVENT_
CATEGORY_ID

The category code for this event 2

Table 11–3 FLX_EP_ACT_EVT_B

Column Name Use Example

COD_ACT_ID The unique activity id as specified in the
activity table

'com.ofss.fc.app.party.service.contact.Cont
actPointApplicationService.updateContact
Point.dndInfo'

COD_EVENT_ID The unique event id as specified in the
event table

'PI_UPD_DND_INFO'

TXT_ACT_EVT_DESC Meaningful description for the activity
event mapping

'DND Info Updated'

TXT_EVT_TYP The type of event 'OTHER'

TXT_ACT_EVT_TYP The type of activity event mapping 'ONLINE'

Transaction as an Activity

11-4 Oracle Banking Platform Extensibility Guide

11.1.5 Activity Log DTO
In order to transfer activity data to the actions defined for the event, you need to
develop data objects to contain the activity data. The DTO should implement the
interface com.ofss.fc.xface.ep.dto.IActivityLog. Module specific activity log DTO's which
already implement the IActivityLog interface are present. These DTO's contain the
application specific and module specific activity data. You can extend the module's
DTO class and add the transaction specific activity data.

For party module, the class com.ofss.fc.app.party.dto.alert.IndividualPartyTypeDatalogDTO
is one of the classes that implement the IActivityLog interface. For the aforementioned
activity, the activity log DTO can be as follows:

Figure 11–4 Activity Log DTO

11.1.6 Alert Metadata Generation
This section describes the different types of alert metadata generation.

Metadata Generation
To generate metadata for alerts you need to have plugin.

Once you have plugin you need to set properties in preferences in windows tab for
Service Publisher, Service Deployer and Workspace Path.

1. Go to your DTO class and right-click that class and click the following : Oracle
Banking Platform -> Generate DTO Metadata.

2. This will generate the insert scripts for following two tables:

■ FLX_MD_DATA_DEFN

■ FLX_MD_FIELDS_DEFN

These scripts will be generated in your config folder by default. The path of
this script is :

WorkspaceDirectory -> config -> meta-data-scripts -> incr-meta-data.log

Transaction as an Activity

Alerts Extension 11-5

Figure 11–5 Metadata Generation

Service Data Attribute Generation
After generating metadata, we need to generate service attribute which will be
mapped with facts which will be used in data bindings in Alert Maintenance screen
AL04.

To generate we need to activity ID class for specific event, DTO is used for this activity
ID.

1. Right-click that service and select Oracle Banking Platform -> Generate Service
Attribute Metadata.

In this case also insert scripts will be generate in same location as metadata
attributes.

2. This will generate the insert scripts for following tables:

■ FLX_MD_SERVICE_INPUTS

■ FLX_MD_SERVICE_OUTPUT

■ FLX_MD_SERVICE_ATTR

There are some steps in generating of service attribute which are as follows:

Transaction as an Activity

11-6 Oracle Banking Platform Extensibility Guide

Figure 11–6 Service Data Attribute Generation

FLX_MD_SERVICE_ATTR is used to map the alert activity attribute with the fact code
and to map the alert activity attribute with the DTO field to extract the data from.

As an example, the key fields in FLX_MD_SERVICE_ATTR for an alert activity
attribute have been listed below:

Table 11–4 Key Fields in FLX_MD_SERVICE_ATTR

Column Description

COD_SERVICE_ATTR_ID The Unique ID for the Attribute of any Activity configured for an alert. For example,
com.ofss.fc.app.account.service.accountaddresslinkage.AccountAddressLinkageAppl
icationService.createAccountAddressLinkage.Alert.Party.Address.City.DTO

TYP_DATA_SRC Indicates the Data Source(entity/input/DTO) for the Attribute of the Resource

Transaction as an Activity

Alerts Extension 11-7

11.1.7 Alert Message Template Maintenance
User will maintain template format and template ID to be used for the alerts
definition.

These messages need to be defined only if the same template is going to be used for
multiple events. Else there is a provision to define the message template during the
definition of the alert itself.

All data elements defined within the '#' symbol will be defaulted in the panel below as
data attribute.

For example, your account Number #Acct No# has been credited with #currency#
#transaction amount# being cash deposited

The user can Mask certain digits in data elements that are preceded with '#' under the
'Attribute Mask' column.

COD_ATTR_ID This field indicates the Fact Code. For example, Alert.Party.Address.City

COD_SERVICE_ID This field indicates the Activity ID. For example,
com.ofss.fc.app.account.service.accountaddresslinkage.AccountAddressLinkageAppl
icationService.createAccountAddressLinkage

REF_FIELD_DEFN_ID This field indicates the DTO leaf field from which the data is extracted. For e.g.:
com.ofss.fc.app.dda.dto.alert.AccountAddressLinkageAlertDTO.Address,com.ofss.fc.
datatype.PostalAddress.City

Data for this column is interpreted /extracted as follows.

com.ofss.fc.datatype.PostalAddress address =
com.ofss.fc.app.dda.dto.alert.AccountAddressLinkageAlertDTO.getAddress();

String city = address.getCity()

Table 11–4 (Cont.) Key Fields in FLX_MD_SERVICE_ATTR

Column Description

Transaction as an Activity

11-8 Oracle Banking Platform Extensibility Guide

Figure 11–7 Alert Message Template Maintenance

11.1.8 Alert Maintenance
Given below is the Alert Maintenance screen.

Alert Subscription

Alerts Extension 11-9

Figure 11–8 Alert Maintenance

We can define the alert name, expiry date, alert type (Customer Subscribed/
Mandatory) and link this with predefined activity and event. These entries are fed to
table "flx_ep_act_evt_acn_b".

Now, we need to link a Recipient Message Template/s with this alert. For this we drag
recipients from the Recipient Panel on to the Recipient Message Template Panel. In this
setup, we define the kind of recipient and link this to predefined Message Template
and Destination Types. The entry for this goes to table "flx_ep_evt_rec_b".

Finally, we need to complete the Message Template Mapping Configuration for each
Recipient Message Template. For this, we map each data attribute of each Recipient
Message Template with a corresponding attribute (Fact Code) from the drop down.
This drop down populates fact codes configured for this activity id in the metadata
table FLX_MD_SERVICE_ATTRIBUTE. The entry for this goes to table "flx_ep_msg_
src_b"

11.2 Alert Subscription
Subscription can be done for alerts at account level or at application level (called as
subscription level)

Alert Subscription

11-10 Oracle Banking Platform Extensibility Guide

Figure 11–9 Alert Subscription

11.2.1 Transaction API Changes
You will need to modify the transaction API to support the newly registered activities.
This section gives an overview of how the developer needs to modify the transaction
API.

The entry point for activity business logic would be the service call for the transaction.
In the aforementioned use case, the service call would be
com.ofss.fc.app.party.service.contact.ContactPointApplicationService.updateContactPoint(...).

Figure 11–10 Transaction API Changes - Service Call

If the activity needs to be conditional, then the logic for evaluating the conditions
should be present inside the service call. This should be followed by the invocation of
the routine to register the activity. In the aforementioned use case, the activity should

Alert Subscription

Alerts Extension 11-11

be registered only if the update transaction updates the attributes associated with DND
Information. Following code snippet shows the conditional evaluation and invocation
of the call to register activity.

Figure 11–11 Transaction API Changes - Conditional Evaluation

The persistActivityLog(..) routine primarily takes the Activity Id, Event Id and Activity
Log DTO. This routine first calls a helper routine to populate the activity log DTO with
the activity data and then passes on the DTO to the appropriate Event Processing
Adapter which will register the activity and generate associated events.

Figure 11–12 Transaction API Changes - persistActivityLog(..)

You will need to add the business logic to populate the activity log DTO with the data
specific to the transaction and the activity. This logic can be present inside the activity
helper class for the module. Module specific activity attributes can also be populated
in this logic. Following code snippet shows the activity log DTO population with
activity data for the aforementioned activity.

Figure 11–13 Transaction API Changes - Activity Log

Alert Processing Steps

11-12 Oracle Banking Platform Extensibility Guide

Figure 11–14 Transaction API Changes - Register Activity

The Event Processing Adapter contains the logic to register the activity and generate
events. You can use the existing adapter class
com.ofss.fc.app.adapter.impl.ep.EventProcessingAdapter or write your own custom adapter
which must implement the interface
com.ofss.fc.app.adapter.impl.ep.IEventProcessingAdapter.

All the above steps would suffice to support a transaction as an activity and raise
events on the activity.

On successful completion of the transaction and the activity registration and event
generation, you can view the activity log in the table FLX_EP_ACT_LOG_B and the
generated events log in the table FLX_EP_EVT_LOG_B.

Actions associated with the activity events would pick up the activity and event data
from these tables for processing.

11.3 Alert Processing Steps
For any modules the starting point is EventProcessingAdapter method named
’registerActivityAndGenerateEvent’.

Through this we call ’registerActivityAndGenerateEvent’ method of
ActivityRegistrationApplicationService which marks actually registration of your
activities and events.

During this activity the entries are made in table FLX_EP_ACT_LOG_B and FLX_EP_
EVT_LOG_B with appropriate comments depending on type of Alerts whether it is
Mandatory (M) or Customer Subscribed (S).

There is one flag maintained in FLX_EP_EVT_LOG_B viz. FLG_PROCESS_STAT,
which specifies status of event.

In this step various validations are also performed such as checking if email Id of
recipient is mentioned and so on.

However, the final processing of alerts is managed in ’Interaction.java’ when it is about
to close that is, call is made in ’manageLastInteraction’.

Alert Processing Steps

Alerts Extension 11-13

Figure 11–15 Alert Processing Steps

EventProcessStatusType
This shows status of event throughout cycle of event processing from Registration of
event to Dispatch of Alert. (It is maintained in FLX_EP_EVT_LOG_B table as "flg_
process_stat").

The various statuses of events are as follows:

■ GENERATED("G“)

■ COMPLETED("C“)

■ NO_SUBSCRIPTION("N")

■ ABORTED("A")

■ INITIATED("I")

■ REINITIATED("R")

For any event online or batch, when it is logged for first time it is marked as Generated
"G" in flx_ep_evt_log_b table.

Alert Processing Steps

11-14 Oracle Banking Platform Extensibility Guide

Figure 11–16 Event Processing Status Type

JMS (Java Messaging Service) is used for dispatch of alerts.

For Online Alerts:

■ Direct Approach: If alert gets send in first try, flg_process_stat is as "G" in FLX_
EP_EVT_LOG_B and alert is dispatched through JMS, and then entry for that
event record is moved to FLX_EP_EVT_LOG_HIST_B and flg_process_stat is
marked as "C".

■ EventPoller: If alert gets failed in first retry it will mark status as "R". In this case
EventPoller will pick the failed event and complete its processing and mark status
as "A" and then entry for that event record is moved to FLX_EP_EVT_LOG_HIST_
B and flg_process_stat is marked as "C".

■ For Batch Alerts: In case of batch alerts as no Interaction.close() is called, the direct
approach is not used in Batch Alerts. In this case only EventPoller approach is
used.

Alert Dispatch Mechanism

Alerts Extension 11-15

Figure 11–17 Batch Alerts

11.4 Alert Dispatch Mechanism
The dispatch mechanism is triggered by the AlertHandlerService for dispatching
subscribed actions of type Alert. The processing is implemented as part of the
respective handlers. The handler services delegate the call to the Dispatcher based on
the type of DestinationType configured in the Recipient at the time of ActivityEventAction
maintenance which involves RecipientMessageTemplate setup.

The module provides definition of multiple dispatch detail configurations on the basis
of SubscriberType and various configuration parameters like UrgencyType,
ImportantType in the AlertTemplate.

The dispatcher uses the DispatchDataConverter to convert the data captured as part of
activity registered in the system into data which can be dispatched to the target
subscriber.

Alert Dispatch Mechanism

11-16 Oracle Banking Platform Extensibility Guide

Figure 11–18 Alert Dispatch Mechanism

Alert Dispatch Mechanism

Alerts Extension 11-17

Figure 11–19 Alert Dispatch Mechanism - Dispatcher Factory

Adding New Alerts

11-18 Oracle Banking Platform Extensibility Guide

Figure 11–20 Alert Dispatch Mechanism - Destination

The various Destination Types are coded as per the above diagram. This existing
framework makes it further extensible as per the requirements that is, you can add
more destination types.

11.5 Adding New Alerts
To add a new alert:

1. Implement the Service Extension Interface for the application service of the
method for which alert is to be raised.

2. Use either the preServiceMethod() or postServiceMethod() hook for the method in
the implemented service extension class depending on the requirement.

3. The method should call the registerActivityAndGenerateEvent() of the
EventProcessingAdapter class. In case a custom adapter is required the custom
adapter method should call registerActivityAndGenerateEvent() of
ActivityRegistrationApplicationService.

Adding New Alerts

Alerts Extension 11-19

4. New Activity ID, Event ID and implementation of IActivityLogDTO have to be
created.

11.5.1 New Alert Example
This example will explain the above points in detail.

Use Case: A new alert has to be added after updating a party name.

The class PartyNameApplicationService has a method updateIndividualName() that
does this activity.

Create the extension class, say PartyNameApplicationServiceExt, for this application
service by implementing its extension interface IPartyNameApplicationServiceExt.
Since the alert should be raised after updation of party name we will use the
postUpdateIndividualName() method.

Within the method a call to registerActivityAndGenerateEvent() in
EventProcessingAdapter should be made.

Code snippet for the call:

com.ofss.fc.app.adapter.IAdapterFactory adapterFactory =
AdapterFactoryConfigurator.getInstance().getAdapterFactory(ModuleConstant.EVENT_
PROCESSING);
IEventProcessingAdapter adapter = (IEventProcessingAdapter)
adapterFactory.getAdapter(EventProcessingAdapterConstant.MODULE_TO_ACTIVITY);
adapter.registerActivityAndGenerateEvent(applicationContext, activityId, eventId,
new Date(), activityLog);

In case a new customer adapter has to be used, a call to
registerActivityAndGenerateEvent() in ActivityRegistrationApplicationService should
be made from within the adapter. A class called ActivityEventKeyDTO is used which
captures the event ID and activity ID.

Code snippet for the call:

ActivityRegistrationApplicationService activityManager = new
ActivityRegistrationApplicationService();
ActivityEventKeyDTO activityEventKeyDTO = new ActivityEventKeyDTO();
activityEventKeyDTO.setActivityId(activityID);
activityEventKeyDTO.setEventId(eventID);
ActivityRegistrationResponse response =
activityManager.registerActivityAndGenerateEvent(sessionContext,activityEventKeyDT
O,eventProcessingDate, activityLog);

The signature for the method is:

public String registerActivityAndGenerateEvent(ApplicationContext
applicationContext,
 String activityID,
 String eventID,
 Date eventProcessingDate,
 Object logObject) throws
FatalException;

Create new activityID, eventID and logObject to be passed to this method.

ActivityID and EventID as explained in detail in the above section have to be added in
the following database tables. If data is not added in the tables, a runtime exception
will occur while displaying the alert.

Adding New Alerts

11-20 Oracle Banking Platform Extensibility Guide

FLX_EP_ACT_B stores all the recognized activities.

FLX_EP_EVT_B stores all the recognized events.

FLX_EP_ACT_EVT_B which stores the mapping between all activities and events.

The Activity ID denotes the actual action that should raise the event within the
application service and hence for ease of understanding it should ideally be the fully
qualified name of the method.

Eg.com.ofss.fc.app.party.service.contact.PartyNameApplicationService.updateIndivid
ualName

The Event ID can be anything that denotes the event

For example, UPDATED_PARTY_NAME

The logObject is an implementation of IActivityLogDTO. For the new alert a new
implementation has to be created. The DTO should have fields mapped to the
placeholders in the new alert to be added

For example, for the alert "Your name has been updated from #previous_Name# to
#new_Name# successfully."

the following DTO has to be made. The variables have to map to the placeholders in
the alert template.

public class PartyNameChangeLogDTO implements IActivityLogDTO {
 private static final long serialVersionUID = -3492413059506052931L;
 private String updatedName;
 private String registeredOldName;
 //getters and setters for the variables
}
The DTO has to be populated with relevant data
E.g.:. private IActivityLog populateActivityLogForIndividualPartyNameChange() {
 PartyNameChangeLogDTO activityLog = new PartyNameChangeLogDTO();
 activityLog.setUpdatedName("Andrew Matthew");
 activityLog.setRegisteredOldName("Andy Matthew");
 return activityLog;
}

11.5.2 Testing New Alert
JUnit test cases can be used to test the alert created by supplying sample input data.
The example below shows how the above new alert can be tested.

public void testPartyUpdateName() throws IOException {
 String testCase = "PartyUpdateName";
 ActivityRegistrationApplicationService activityRegistrationApplicationService
 = new ActivityRegistrationApplicationService();
 ActivityEventKeyDTO activityEventKeyDTO = new
ActivityEventKeyDTO("com.ofss.fc.app.party.service.contact.
 PartyNameApplicationService.updateIndividualName "," UPDATED_PARTY_NAME");
 Date date = new Date();
 SessionContext sessionContext = getSessionContext();
 com.ofss.fc.app.party.dto.alert.PartyNameChangeLogDTO activityLog
 = new com.ofss.fc.app.party.dto.alert.PartyNameChangeLogDTO ();
 activityLog.setUpdatedName("Andrew Matthew");
 activityLog.setRegisteredOldName("Andy Matthew");
 try{
 ActivityRegistrationResponse response
 =
activityRegistrationApplicationService.registerActivityAndGenerateEvent(

Adding New Alerts

Alerts Extension 11-21

 sessionContext, activityEventKeyDTO, date, activityLog);
 TransactionStatus result= response.getStatus();
 dumpTransactionStatus("ActivityRegistrationApplicationService", "
testPartyUpdateName ", result);
 logger.log(Level.FINER, "The ErrorCode is: "+ result.getErrorCode());
 } catch (FatalException e) {
 logger.log(Level.SEVERE,"FatalException from"+THIS_COMPONENT_NAME+".
testPartyUpdateName ",e);
 fail("Unexpected failure from " + THIS_COMPONENT_NAME + ".
testPartyUpdateName ");
 }
}

For testing with the JUnit test cases we need to update the PoolType property in the
AlertPollerPool.properties as follows:

PoolType=JDK
The value should be JDK for testing with JUnit (standalone application) and JMS if the
application is run on WebLogic server.

Adding New Alerts

11-22 Oracle Banking Platform Extensibility Guide

12

Creating New Reports 12-1

12Creating New Reports

Oracle's Business Intelligence Publisher Enterprise is a standalone reporting and
document output management solution that allows companies to lower the cost of
ownership for reporting solutions. BI Publisher Enterprise's (hereafter known as BIP)
strength is that it separates the data model from the actual report formatting/layout.
BIP relies on 2 fundamental components to create reports, XML data and a template
that represents the look and feel of the report. The XML data can be generated from
any number of sources and BIP makes accessing data in the proper format easy.
Templates can be created in Microsoft Word and Adobe Acrobat allowing almost
anyone familiar with these desktop applications the ability to create reports.

Figure 12–1 Creating New Reports

The following sections will give an overview of Oracle's BI Publisher. The developer
will be able to add and configure an Adhoc report to OBP using the BI Publisher.

Use Case: The OBP application has a batch framework using which a developer can
easily add batch processes, also known as batch shells, to the application. The batch
framework executes all the batch shells defined in the system as per their
configuration. The results of these batch shell executions are stored in the database. We
will be adding a report using BIP for the execution results summary for batch shells.

12.1 Data Objects for the Report
The Data Model of the report invokes the database to fetch the data for the report
through certain data objects that we will need to create. The primary data objects
needed for the reports are as follows:

Data Objects for the Report

12-2 Oracle Banking Platform Extensibility Guide

Global Temporary Table
You will need to create a Global Temporary Table based on the fields required for the
report data. This table should mandatory have the field SESSION_ID of NUMBER
type. The naming convention followed in OBP for the global temporary table's name is
RPT_<Module_Code>_R<Report_Number>.

For the aforementioned use case, the script for creating the global temporary table
would be as shown below.

Figure 12–2 Global Temporary Table

Report Record Type
You will need to create a Type object with the fields present in the global temporary
table. This type will represent a single row of data for the report. The naming
convention followed in OBP for the report record type's name is REP_REC_<Report_
Id>.

For the aforementioned use case, the script for creating the report record type would
be as shown below.

Figure 12–3 Report Record Type

Data Objects for the Report

Creating New Reports 12-3

Report Table Type
You will need to create a Type object which will be a table of the previously created
report record type. This type will represent the set of rows of data for the report. The
naming convention followed in OBP for the report table type's name is REC_TAB_
<Report_Id>.

For the aforementioned use case, the script for creating the report table type would be
as shown below.

Figure 12–4 Report Table Type

Report DML Function
You will need to create a DML function which will be invoked to populate the
previously created global temporary table with the data required to be displayed in
the report. This function can have parameters as per the developer’s requirements
with filtering the data or inserting additional data. The naming convention followed in
OBP for the report DML function's name is AP_DML_<Report_Id>.

For the aforementioned use case, the script for the report DML function would be as
shown below.

Figure 12–5 Report DML Function

Report DDL Function
You will need to create a DDL function which will be invoked to fetch data required to
be displayed in the report from the global temporary table and wrap it in the
previously created report table type. The naming convention followed in OBP for the
report DDL function's name is AP_DDL_<Report_Id>.

Catalog Folder

12-4 Oracle Banking Platform Extensibility Guide

For the aforementioned use case, the script for creating report DDL function would be
as shown below.

Figure 12–6 Report DDL Function

Data Model for the Report
Once you have created the data objects for the report in the database, you can start
adding and configuring the report using BIP. Log in to the BIP application and follow
these steps.

You can log in to the BIP application deployed on http: //<IP
ADDRESS><PORT>/xmlpserver/ with the credentials weblogic/weblogic1.

12.2 Catalog Folder
Before creating the data model or the layout for the report, you should create a folder
to save the model and layout. You can find the link for the Catalog tab on the home
screen. Click it and create a folder for your report at an appropriate location.

For the aforementioned use case, you can create a folder PI007 at the location /My
Folders/FC Module/Demo as shown below.

Data Model

Creating New Reports 12-5

Figure 12–7 Catalog Folder

12.3 Data Source
You will need to add the data source from which the data will be fetched to be
displayed in the report. The data source can be a JDBC Connection, JNDI Connection,
File, LDAP Connection and so on. You can find the link for the Administration tab on the
home screen. Click it and choose the appropriate data source connection type. Enter
the required parameter values and validate the connection. Save the data source with
an appropriate name.

For the aforementioned use case, you can add the JDBC Connection data source as
show below.

Figure 12–8 Data Source

12.4 Data Model
You will need to create a data model to back the report. This data model represents the
report data fetched using the data objects and formatted into XML data. You can find
the link to Create Data Model on the home screen of BIP. Click it and follow these steps:

1. Enter an appropriate description for the data model.

2. Choose the previously created data source from the list displayed.

3. Check the Enable Scalable Model option.

Data Model

12-6 Oracle Banking Platform Extensibility Guide

4. Check the Include Parameter Tags option.

5. Check the Include Empty Tags for Null Elements option.

6. Check the Include Group List Tags option.

7. You can leave the rest of the options to default.

For the aforementioned use case, you can create data model as shown below.

Figure 12–9 Data Model

Data Set
After creating the data model, you will need to create a data set of the fields required
to be displayed in the report. You can find the link for Data Sets on the left side pane of
the screen. To create the data set, follow these steps:

1. In the Create Data Set icon, choose the option Create Data Set from SQL Query.

2. Enter an appropriate name for the data set.

3. Choose the previously created data source from the list displayed.

4. Enter the SQL query which will be used to fetch the data for the report. The results
returned should be of the Report Table Type previously created.

For the aforementioned use case, you can create the data set as shown below.

Data Model

Creating New Reports 12-7

Figure 12–10 Data Set

On click of OK, a data set will be created with all the fields as defined in the previously
created Report Record Type.

You can group the fields as per the requirements of the report:

1. Select the field on which you want to group and choose Group By.

2. After creating a group, you can move fields between the groups.

3. You can also set field which will be used to sort the data displayed in a group.

For the aforementioned use case, you can group the fields as shown below.

Figure 12–11 Group Fields

You can view and edit the XML structure and labels of the report data in the Structure
tab in a tabular format.

For the aforementioned use case, the structure would be as shown below:

Data Model

12-8 Oracle Banking Platform Extensibility Guide

Figure 12–12 XML Structure and Labels

You can view the actual XML code in the Code tab.

For the aforementioned use case, the XML code would be as shown below.

Figure 12–13 XML Code

Input Parameters
You can define the Input Parameters required by the report in the Parameters tab present
on the left hand side pane of the screen. To define input parameters, follow these steps:

1. In the Parameters tab, click the icon for Add Parameter.

2. Enter the name, type, display label and default value for the parameter.

3. Repeat the above steps to define as many parameters as required.

For the aforementioned use case, you can add parameters as shown below:

XML View of Report

Creating New Reports 12-9

Figure 12–14 Add Input Parameters

12.5 XML View of Report
After following the above steps, save the data model in the previously created catalog
folder with an appropriate name. You can view the report without the layout in the
XML form by clicking on the icon for XML View.

In the XML view, you will see input fields for the previously defined input parameters.
Enter appropriate values in those fields and click Run. You will be able to see the XML
representation of the report data.

For the aforementioned use case, the XML representation of the report data would be
as shown below.

Figure 12–15 XML View of Report

Layout of the Report

12-10 Oracle Banking Platform Extensibility Guide

12.6 Layout of the Report
A report needs to be presented in an appropriate format. The format can vary from
report to report and client to client. BIP separates the data model from the layout
making it convenient for the developer.

Anybody familiar with using Microsoft Word or Adobe Acrobat can use the
corresponding plug-ins for these tools to create a layout for a report. You can create a
rich layout using these standalone applications with BIP plug-ins and then upload
them to the BIP application for use in your report.

The BIP application can generate a very basic layout for your report from the data set.
You can download the generated layout, modify it as per your layout requirements
and upload it to the BIP application for use in your report.

The BIP application also allows the user to create a layout on the web. It has a rich set
of tools to with drag and drop features and a ready link to the data set fields. You can
create a layout in this fashion and use it in your report.

You can find the link to Add New Layout on the right side of the screen. Click it to get
the options to create, generate or upload a layout.

Figure 12–16 Layout of the Report - Create Layout

Choose from the Basic Templates to create a layout from a template. The layout editor
screen will open. The previously created data set fields are present on the left pane of
the screen. The toolbar present on top of the layout has tools to insert Layout Grid, Data
Table, Repeating Section, Text Item, List, Image, Page Break, Page Number, elements.

You can drag and drop the layout and data set elements on to the layout as per your
requirements. After making the required modifications, save the layout and return to
the previous screen.

For the aforementioned use case, the layout for the report would be as shown below.

View Report in BIP

Creating New Reports 12-11

Figure 12–17 Layout of the Report - Batch Job Results

12.7 View Report in BIP
After saving the Data Model and Layout, you can view the report in BIP. Click the View
Report link on the top right corner of the screen to open the report screen.

You will be able to see the input fields for the input parameters defined for the report.
Enter appropriate values in these fields and click Apply. The report will be generated
and displayed on the screen with the applicable data returned by the previously
created Data Model and formatted as per the previously created Layout.

For the aforementioned use case, the final report would be as shown below.

Figure 12–18 View Report in BIP

You can export the report in HTML, PDF, Excel, RTF or PowerPoint formats by clicking
on the icon for Export on the right top corner of the screen and choosing the
corresponding export option.

OBP Batch Report Configuration - Define the Batch Reports

12-12 Oracle Banking Platform Extensibility Guide

12.8 OBP Batch Report Configuration - Define the Batch Reports
Entries are required in three tables as given below to generate reports during EOD.

insert into FLX_BATCH_JOB_SHELL_MASTER (COD_EOD_PROCESS, TXT_PROCESS, TXT_PROCESS_
NAME, FRQ_PROC, DAT_LAST_RUN, DAT_SCHEDULED_RUN, TXT_PROC_PARAM, COD_PROC_STATUS,
NUM_PROC_ERROR, FLG_RUN_TODAY, COD_PROC_CATEGORY, FLG_MONTH_END, FLG_MNT_STATUS,
COD_MNT_ACTION, COD_LAST_MNT_MAKERID, COD_LAST_MNT_CHKRID, DAT_LAST_MNT, CTR_
UPDAT_SRLNO, COD_MODULE, DAT_PROC_START, DAT_PROC_END, TXN_KEY, SERVICE_KEY, NAM_
COMPONENT, TYPE_COMPONENT, NAM_DBINSTANCE, RETRY_COUNTER, NON_RETRY_COUNTER, COD_
UNSTREAMED_PROCESS, COD_BRANCH_GROUP_CODE)
values ('ch_eod_report_shell', 'CASA EOD Reports', 'CASA EOD Reports', '1', to_
date('15-02-2012', 'dd-mm-yyyy'), to_date('15-12-2007', 'dd-mm-yyyy'), '99', 0, 0,
'Y', 1, 0, 'A', ' ', 'SETUP1', 'SETUP2', to_date('09-02-2002', 'dd-mm-yyyy'), 2,
'CH', to_date('21-08-2008 09:54:57', 'dd-mm-yyyy hh24:mi:ss'), to_date('28-02-2011
05:02:41', 'dd-mm-yyyy hh24:mi:ss'), 'DUMMY', 'execute',
'com.ofss.fc.bh.batch.BatchReportShellBean', 'B', 'PROD', 0, 0, 'ch_eod_report_
shell', 'BRN_GRP_1');

Cod_proc_category = 1, for EOD; 2, for BOD and 16 for Internal System EOD

Nam_component is the same for all report shells.

Also we are using Branch_Group_Category ='BRN_GRP_1' for all these report shells.

12.9 OBP Batch Report Configuration - Define the Batch Report Shell
Insert into FLX_BATCH_JOB_SHELL_DEPEND (COD_EOD_PROCESS, COD_REQD_PROCESS, COD_
PROC_CATEGORY, COD_REQD_PROC_CAT, FLG_MNT_STATUS, COD_MNT_ACTION, COD_LAST_MNT_
MAKERID, COD_LAST_MNT_CHKRID, DAT_LAST_MNT, CTR_UPDAT_SRLNO, COD_BRANCH_GROUP_
CODE)
Values ('ch_eod_report_shell', 'dd_eod_action', 1, 1, 'A', ' ', 'SETUP', 'SETUP',
to_date('30-06-1995', 'dd-mm-yyyy'),2, 'BRN_GRP_1');

Here, in the first column is the report shell name and second is the name of the shell
after which this shell should run. So 'ch_bod_report_shell' runs after 'dd_bod_action'.
The remaining columns are self explanatory.

COD_PROC_CATEGORY=1 , for EOD; 2, for BOD and 16 for Internal System EOD
COD_REQD_PROC_CAT=1, for EOD; 2, for BOD and 16 for Internal System EOD

Also we are using Branch_Group_Category = 'BRN_GRP_1' for all these report shells.

12.10 OBP Batch Report Configuration - Define the Batch Report Shell
Dependencies

Insert into flx_ba_report_ctrl (COD_REPORT_ID, FLG_REP_ADV, COD_MODULE, NAM_
REPORT, TYP_REPORT, FRQ_REPORT, FLG_PRINT, FLG_DELETE, CTR_REP_COPIES, COD_
PRIORITY, COD_ACCESS_LVL, COD_FILEID, BUF_INV_VAR1, BUF_INV_VAR2, BUF_INV_VAR3,
BUF_INV_VAR4, BUF_INV_VAR5, FLG_MNT_STATUS, COD_MNT_ACTION, COD_LAST_MNT_MAKERID,
COD_LAST_MNT_CHKRID, DAT_LAST_MNT, CTR_UPDAT_SRLNO, FLG_SOURCE, FLG_SPLIT, FLG_
PROD_REP, COD_REPORT_DB_PREFIX, FLG_APPLY_SC, REF_UDF_NO, XPATH, FLG_REPORT_
SERVER)
values ('CH318', 'R', 'CH', 'CASA BALANCE LISTING', 'E', '1', '1', '0', 1, 0, 0,
10047, ' ', ' ', ' ', ' ', ' ', 'A', ' ', 'PHASE_2', 'PHASE_2', to_
date('01-11-1999', 'dd-mm-yyyy'), 2, 'P', 'Y', 'P', 'PROD', '', '', '', 'B');

OBP Batch Report Configuration

Creating New Reports 12-13

Entry for each report should be here with typ_report = 'I' for Internal System EOD; 'E'
for EOD and 'B' for BOD.

Currently, for EOD and BOD eod_report_shell and bod_report_shell will take care of
all non CASA and TD EOD and BOD reports respectively.

No separate module specific shell is required during EOD and BOD. That is to
mention Entry 3 alone is sufficient during EOD and BOD categories for any module.
However, entries are needed for all three entries for batch report generation during
any other category.

12.11 OBP Batch Report Configuration
This section describes the OBP batch report configuration.

12.11.1 Batch Report Generation for a Branch Group Code
During Batch Process, a report should be generated for all branches linked to the
respective Branch Group Code.

For any Batch Report to make use of the Branch Group Code getting passed by the
application, a parameter 'P_COD_BRANCH_GRP' has to be defined in the Data
Model.

The Data Model should pass this parameter to the Report Related DDL Function.

The Report Related DML Function filters all branch codes from FLX_BATCH_JOB_
RESULTS_FILTERED that belong to the same Branch Group Code.

OBP Batch Report Configuration

12-14 Oracle Banking Platform Extensibility Guide

Figure 12–19 Batch Report Generation for a Branch Group Code

12.11.2 Batch Report Generation Status
At the end of all batch processes BA_REPORT_RESTART gets logged with the
generated report status as D -> Done or F->Failed.

12.11.3 Batch Report Generation Path
The reports (for example, 30th September 2008) will be generated as shown in the host
side screen-shot.

Locate these reports at this location in the host server.

/oracle/deployables/batch/08/runarea/rjsout/09/30 which actually is of the format

/config/../<BankCode>/runarea/rjsout/<MM>/<DD>

OBP Adhoc Report Configuration

Creating New Reports 12-15

Figure 12–20 Batch Report Generation Path

12.12 OBP Adhoc Report Configuration
This section describes the OBP adhoc report configuration.

12.12.1 Define the Adhoc Reports
Define the adhoc reports as follows:

Insert into flx_ba_report_ctrl (COD_REPORT_ID, FLG_REP_ADV, COD_MODULE, NAM_
REPORT, TYP_REPORT, FRQ_REPORT, FLG_PRINT, FLG_DELETE, CTR_REP_COPIES, COD_
PRIORITY, COD_ACCESS_LVL, COD_FILEID, BUF_INV_VAR1, BUF_INV_VAR2, BUF_INV_VAR3,
BUF_INV_VAR4, BUF_INV_VAR5, FLG_MNT_STATUS, COD_MNT_ACTION, COD_LAST_MNT_MAKERID,
COD_LAST_MNT_CHKRID, DAT_LAST_MNT, CTR_UPDAT_SRLNO, FLG_SOURCE, FLG_SPLIT, FLG_
PROD_REP, COD_REPORT_DB_PREFIX, FLG_APPLY_SC, REF_UDF_NO, XPATH, FILE_DESC, FLG_
REPORT_SERVER)
values ('CH318', 'R', 'CH', 'CASA BALANCE LISTING', 'A', '1', '1', '0', 1, 0, 0,
10047, ' ', ' ', ' ', ' ', ' ', 'A', ' ', 'PHASE_2', 'PHASE_2', to_
date('01-11-1999', 'dd-mm-yyyy'), 2, 'P', 'Y', 'P', 'PROD', '', '', '', 'Savings
Listing Reports', 'B');

12.12.2 Define the Adhoc Report Parameters
Define the adhoc report parameters as follows:

INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_SERIAL,NAM_PROMPT,

OBP Adhoc Report Configuration

12-16 Oracle Banking Platform Extensibility Guide

COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_VAL_ROUTINE,REQD_DESC) VALUES
('CH318','R',1,'Branch Code',0,0,'N','01-NOV-99','','Y')
/
INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_SERIAL,NAM_PROMPT,
COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_VAL_ROUTINE,REQD_DESC) VALUES
('CH318','R',2,'Product Code',0,0,'N','01-NOV-99','','Y')
/
INSERT INTO flx_ba_report_params (COD_REPORT_ID,FLG_REP_ADV,COD_SERIAL,NAM_PROMPT,
COD_FLD_TYP,LEN_FLD,FLG_DELETE,DAT_LAST_MNT,NAM_VAL_ROUTINE,REQD_DESC) VALUES
('CH318','R',3,'From Date(DD-MMM-YYYY)',8,0,'N','01-NOV-99','','Y')
/

Also COD_FLD_TYP = 8 will ensures the host side date format validations.

COD_FLD_TYP = 0 is for string type parameters.

Corresponding to each of the above sequence of parameters appearing in screen, a
mandatory parameter 'FUNC_PARAM<Parameter Sequence Number>' should be
defined in BIP Data Model. So the input parameter 'FUNC_PARAM2' defined in data
model should correspond to Product Code as defined above.

12.12.3 Define the Adhoc Reports to be listed in Screen
Define the group name as follows:

For Adhoc Report, column FILE_DESC of report master table FLX_BA_REPORT_
CTRL contains the name of the group under which the report will be listed in 7775
screen.

12.12.4 Adding Screen Tab for Report Module
For adding a Screen Tab do the following:

com.ofss.fc.ui.view.brop.jar@
public_html/com/ofss/fc/ui/view/brop/reportRequest/form/ReportRequest.jsff
 <af:commandNavigationItem partialSubmit="true" text="#{rb7775.LBL_
Reconciliation}"
 binding="#{ReportRequest.cni11}" id="cni11" immediate="true"
 actionListener="#{ReportRequest.processMode}" selected="false">
 <f:attribute name="mode" value="Reconciliation"/>
 </af:commandNavigationItem>

com.ofss.fc.ui.view.brop.jar@
/com/ofss/fc/ui/view/brop/reportRequest/backing/ReportRequest.java
private RichCommandNavigationItem cni11;
 Add following accessors:-
 public void setCni11(RichCommandNavigationItem cni11) {
 this.cni11 = cni11;
 }
 public RichCommandNavigationItem getCni11() {
 return cni11;
 }

Also modify the selection tab highlighting portion of the code.

com.ofss.fc.ui.view.brop.jar@

/com/ofss/fc/ui/view/brop/reportRequest/rb/ReportRequest_en.properties

Adhoc Report Generation – Screen 7775

Creating New Reports 12-17

LBL_Reconciliation = Reconciliation

12.13 Adhoc Report Generation – Screen 7775
The adhoc report can be generated using the following screen:

Figure 12–21 Adhoc Report Generation - Report Request

Figure 12–22 Adhoc Report Generation - Report Generated

Adhoc Report Viewing – Screen 7779

12-18 Oracle Banking Platform Extensibility Guide

On filling the parameters and clicking on 'Generate' the report request gets
successfully posted.

At the end of Adhoc report generation, RJS_REQUESTS gets logged with the
generated report status as D -> Done, F-> Failed.

12.14 Adhoc Report Viewing – Screen 7779
The adhoc report can be viewed using the following screen:

Figure 12–23 Advice Report

On selecting the correct user id that generated the report we get the reports generated
by that user.

Now sort the Transaction Number (right most column) in the descending order.

Select the top record and click 'View Report'.

Adhoc Report Viewing – Screen 7779

Creating New Reports 12-19

Figure 12–24 View Generated Adhoc Report

The report is rendered in the front end.

Adhoc Report Viewing – Screen 7779

12-20 Oracle Banking Platform Extensibility Guide

13

Security Customizations 13-1

13Security Customizations

OBP comprising of several modules has to interface with various systems in an
enterprise to transfer or share data which is generated during business activity that
takes place during teller operations or processing. While managing the transactions
that are within OBP's domain, it is needed to consider security and identity
management and the uniform way in which these services need to be consumed by all
applications in the enterprise.

This is possible if these capabilities can be externalized from the application itself and
are implemented within products that are specialized to handle such services.
Examples of these services include authentication against an enterprise identity-store,
creating permissions and role-based authorization model that controls access to not
only the components of the application, but also the data that is visible to the user
based on fine-grained entitlements.

The following security functions are provided with the extensibility features:

■ Attributes participating in access policy rules

■ Attributes participating in fraud assertion rules

■ Attributes participating in matrix-based approval checks

■ Account validator

■ Customer validator

■ Business unit validator

■ Adding validators

■ Customizing user search

■ Customizing of a ‘Send OTP | Validate OTP’ logic

■ Customizing Role Evaluation

■ Customizing Limit Exclusions

■ Adding approval checks

13-2 Oracle Banking Platform Extensibility Guide

Figure 13–1 Security Customizations Interface

■ Oracle Identity Manager (OIM) is used for managing user provisioning.

■ Oracle Access Manager (OAM) is used for managing declarative authentication
and SSO.

■ Oracle Platform Security Services (OPSS) is used for runtime evaluation of authn /
authz.

■ Oracle Adaptive Access Manager (OAAM)/Oracle Adaptive Risk Manager
(OARM) is used for step-up authentication and fraud management.

■ Authorization Policy Manager (APM) is used to manage access policy definitions.

■ Oracle Internet Directory (OID) is used as the identity/policy store.

A high-level security use case has the following access checks and assertions.

OPSS Access Policies – Adding Attributes

Security Customizations 13-3

Figure 13–2 Security Use Case with Access Checks and Assertions

13.1 OPSS Access Policies – Adding Attributes
OBP uses OPSS to assert role-based access policies. Access policies are rules-based to
give more flexibility.

Example of an access policy rule:

Grant
Role = RetailBranchOperationsExecutive
Service=com.ofss.fc.app.dda.service.transaction.DemandDepositCashTransactionServic
e.depositCash
Action = perform
IF DepositCash_IsEmployeeAccount=false AND DepositCash_IsRestrictedAccount=false

In the above example, the following facts (attributes) make up the access policy rule:

DepositCash_IsEmployeeAccount
DepositCash_IsRestrictedAccount

The security framework allows for addition to the facts that can be used in rules. The
steps to do this are mentioned in the next section.

13.1.1 Steps
Following steps are needed to add an extra attribute to an access policy rule.

1. Add attribute in OID under the 'Attributes' entry.

OPSS Access Policies – Adding Attributes

13-4 Oracle Banking Platform Extensibility Guide

Figure 13–3 Add Attributes to Access Policy Rule

This can be done directly in OID or by using APM, as shown above.

2. Add the attribute under 'AllowedPolicyAttributes' against the particular resource.

Figure 13–4 Attribute to Access Policy Rule - Authorization Management

This can be done directly in OID or by using APM, as shown above. Adding this
attribute under 'AllowedPolicyAttributes' ensures that the security framework
executes a specified adapter to fetch the attribute value and make it available to
the execution context.

3. Develop custom adapter to retrieve attribute value. Attribute should be structured
along similar lines as the other adapters used for the same purpose.

OAAM Fraud Assertions – Adding Attributes

Security Customizations 13-5

Example -
Attribute - CreditDecisionMatrix_OverallAggregateApplicationAmount
Adapter -
public com.ofss.fc.app.adapter.impl.sms.CreditDecisionAttributesAdapter {
 public String getOverallAggregateApplicationAmount () {
 //Logic to fetch overall aggregate amount
 }
}

4. Add entry in ConstraintAttributeHelper.properties to link the attribute to the
adapter.

CreditDecisionMatrix_OverallAggregateApplicationAmount=
com.ofss.fc.app.adapter.impl.sms.CreditDecisionAttributesAdapter

5. Add/Modify access policy/rule in APM to use the extra attribute.

Figure 13–5 Add or Modify Access Policy Rule

13.2 OAAM Fraud Assertions – Adding Attributes
OBP uses OAAM to assert fraud policies consisting of rules to identify potentially
fraudulent transactions.

Attributes used in fraud identification rules:

payee_id, account_number
The security framework allows for addition to this list of facts. The steps to do this are
mentioned in the next section.

Note: The naming convention of the attribute should be as follows:

The first part of the attribute till the '-' delimiter identifies the
transaction. The remaining part with CamelCase is prefixed with a
'get' to form the method in the adapter.

OAAM Fraud Assertions – Adding Attributes

13-6 Oracle Banking Platform Extensibility Guide

13.2.1 Steps
Following steps are needed to add an attribute to an existing OAAM transaction:

1. Add the attribute under ‘AllowedPolicyAttributes’ against the particular resource.

2. Add attribute in OID under the ‘Attributes’ entry.

3. Develop custom adapter to retrieve attribute value.

4. Add entry in ConstraintAttributeHelper.properties to link the attribute to the
adapter.

The above steps are exactly the same as mentioned in the previous section.

1. Add seed data in the following tables to persist the mapping between OID
attributes and OAAM attributes.

■ flx_sm_fraud_txn_attributes (stores OAAM transaction key to OAAM
attribute mapping) and

■ flx_sm_fraud_assert_attributes (stores OBP attributeName -
oaamAttributeName mapping.

Example -
insert into Flx_Sm_Fraud_Txn_Attributes (TRANSACTION_KEY, ATTRIBUTE_NAME)
values ('payment', 'is_2fa_completed')
/
insert into flx_sm_fraud_assert_attributes (ATTRIBUTE_KEY, FRAUD_ATTRIBUTE_
NAME)
values (OutgoiOBPaymentService_Is2FACompleted', 'is_2fa_completed')
/

2. Add/Modify fraud rules in OAAM to use the extra attribute

Figure 13–6 Add or Modify Fraud Rules in OAAM - Data Tab

Security Validators

Security Customizations 13-7

Figure 13–7 Add or Modify Fraud Rules in OAAM - Conditions Tab

13.3 Matrix Based Approvals – Adding Attributes
OBP uses OPSS to assert matrix-based approvals. The matrix comprises of various
facts.

Example of a matrix-based rule:

Grant
Role = CreditAnalyst
Service=com.ofss.fc.app.origination.service.lending.core.credit.decision.CreditDec
isionApplicationService.approveDecision
Action = performWithoutApprovals
IF CreditDecisionMatrix_Margin > 1
AND CreditDecisionMatrix_CustomerExposure > 10000000

In the above example, the following facts (attributes) make up the access policy rule:

CreditDecisionMatrix_Margin
CreditDecisionMatrix_CustomerExposure

The security framework allows for addition to the facts that can be used in rules.

The steps to add facts are same as described in above section.

13.4 Security Validators
In addition to OPSS access policies, there are additional validators that perform
security checks. The sole purpose of these validators was to give hooks to enable site

Note: The only difference between the policy semantics in the
example mentioned under this and last action is the 'Action'.
['perform' versus 'performWithoutApprovals']

Security Validators

13-8 Oracle Banking Platform Extensibility Guide

specific security logic that would be complicated enough and hence cannot be
provisioned as rules.

The role, channel, service and the attributes available in the execution context are
passed to the validators.

The validators implement the interface
com.ofss.fc.app.adapter.impl.sms.validator.IExtendableApplicationValidator

There are three types of security-validation categories:

■ Customer validators

■ Account validators

■ Business unit validators

There can be multiple validator classes contributing to each individual category.

The package structure of the validators is required to be:

'com.ofss.fc.app.adapter.impl.sms.validator'

13.4.1 Customer Validators
This validator returns a Boolean signifying whether the logged-in user can perform a
transaction on the customer.

Step 1
Add property in ApplicationValidators.properties

com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationService.fetchBasicDe
tails.CustomerValidators=RestrictedAccountApplicationValidator,EmployeeAccountAppl
icationValidator

Step 2
Develop custom validator along the lines of existing adapters.

13.4.2 Account Validators
This validator returns a Boolean signifying whether the logged-in user can perform a
transaction on the account.

Step 1
Add property in ApplicationValidators.properties

com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationService.fetchBasicDe
tails.AccountValidators=RestrictedAccountApplicationValidator,EmployeeAccountAppli
cationValidator

Note: These additional validators come into effect only when the
following property is set.

APPLICATION_SECURITY_VALIDATOR=true

Customizing User Search

Security Customizations 13-9

Step 2
Develop custom validator along the lines of existing adapters.

13.4.3 Business Unit Validators
This validator returns a Boolean signifying whether the logged-in user can perform a
transaction on the business unit.

Step 1
Add property in ApplicationValidators.properties

APPLY_BUSINESS_UNIT_VALIDATION_TO_ALL_SERVICES=false
com.ofss.fc.app.dda.service.account.core.DDAInquiryApplicationService.fetchBasicDe
tails.BusinessUnitValidators=BusinessUnitApplicationValidator
BusinessUnitValidators=GlobalBusinessUnitApplicationValidator

Step 2
Develop custom validator along the lines of existing adapters.

13.5 Customizing User Search
OBP application services use SessionContext as an input parameter to set the context
of the user interacting with the system. The session-context is populated out of the
user's details in OID. Across implementations, the user metadata (objectclasses,
attributes) is expected to be different resulting in the requirements to have a custom
user search capability.

The security framework provides an extension point to inject a custom search. The
steps are given in the next section.

13.5.1 Steps
SecurityConstants.properties contains attributes that enable custom user searches.

Step 1
Add properties in SecurityConstants.properties.

CUSTOM_SEARCH_
CLASS=com.ofss.fc.domain.ixface.sms.service.utils.CustomUserSearchAdapter.retrieve
UserUsingExtendableAttributes
CUSTOM_SEARCH_PARAM=nagactualaccessid

Step 2
Develop custom user search adapter.

Note: BusinessUnit validation can be global, in which case the
following property is set.

APPLY_BUSINESS_UNIT_VALIDATION_TO_ALL_SERVICES=true

Customizing One-Time-Password (OTP) Processing Logic

13-10 Oracle Banking Platform Extensibility Guide

13.6 Customizing One-Time-Password (OTP) Processing Logic
OBP uses OAAM for step-up authentication and fraud assertions. Customer is asked
to enter a one-time password (OTP) if OAAM suspects the transaction to be
fraudulent. The logic to send or validate an OTP is implemented using a custom hook.
Details of the extension are given in the next section.

13.6.1 Steps
OAAM.properties contains a property that provides an extension for second factor
password generation / dispatch.

Steps:

1. Add property for the class implementing 2FA in OAAM.properties

TWO_FACTOR_AUTH_SERVICE=com.ofss.fc.domain.ixface.oaam.TwoFactorAuthService

2. Develop custom class.

13.7 Customizing Role Evaluation
OPSS can be configured to add a user in multiple groups (enterprise roles), as a result
of which a user can have multiple application roles. OBP uses the most significant role
amongst this list to query the user's severity configuration.

The default role-evaluator can be overridden to provide custom role evaluation logic.
The steps to do this are given in the next section.

13.7.1 Steps
SecurityConstants.properties contains an attribute that provides an extension for a
custom role evaluator.

Step 1
Replace property value in SecurityConstants.properties

ROLE_
EVALUATOR=com.ofss.fc.domain.sms.entity.user.roleEvaluationCriteria.SimpleRoleEval
uator

Step 2
Develop custom role evaluator.

Currently, the default role evaluator returns the role that has the maximum limits for
the service.

13.8 Customizing Limits Exclusions
OBP application services evaluate transaction limits for various services. The assertion
logic excludes limits checks for certain conditions. Example, if the customer is
transferring funds to his own accounts. Banks have site-specific requirements to
exclude transactions from limits checks. The security framework provides an extension
point to inject a custom limits exclusions adapter. The steps are given in the next
section.

Customizing Business Rules

Security Customizations 13-11

13.8.1 Steps
LimitsExclusions.properties contains a property that enables custom limit exclusions
logic for a particular service.

Step 1
Add properties in LimitsExclusions.properties

EXCLUSION_PACKAGE_NAME=com.ofss.fc.app.adapter.impl.sms.exclusions
com.ofss.fc.app.dda.service.transaction.DemandDepositFundsTransferService.transfer
FundsToBeneficiaries=TransferFundsExclusionValidator

Step 2
Develop custom limits exclusions adapter.

13.9 Customizing Business Rules
BPEL approval process business rules can be configured and it is based on input
authorizations raised during transaction processing at OBP host. The steps for
configuring the business rules of the approvals are given in the below section.

13.9.1 Steps to Update the Business Rules by Browser
Following are the steps to update the business rules by browser.

1. Log in to BPM Worklist application of the OBP.

Customizing Business Rules

13-12 Oracle Banking Platform Extensibility Guide

Figure 13–8 Log in to BPM Worklist Application screen

2. Select the 'Task' in the select box from the 'Task Configuration' tab in
'Administration'.

Customizing Business Rules

Security Customizations 13-13

Figure 13–9 Task Configuration tab

3. In the 'Rules' tab of the 'Task Configuration' screen, select the stages of approval
where the condition in rule is required to be updated.

Customizing Business Rules

13-14 Oracle Banking Platform Extensibility Guide

Figure 13–10 Stages of Approval

4. After stage selection, select the specific rule where the condition needs to be
updated. The existing condition can be updated or the new test condition
(simple/variable) can be added.

Customizing Business Rules

Security Customizations 13-15

Figure 13–11 Select Test Condition

5. After selection of the test condition, the new expression row appears where the
variable, the operator and the expression value can be selected.

Customizing Business Rules

13-16 Oracle Banking Platform Extensibility Guide

Figure 13–12 Select Values

6. On selection of the search button next to the variable select box, the condition
browser opens where the specific task can be selected.

Customizing Business Rules

Security Customizations 13-17

Figure 13–13 Select Specific Task

7. Update the variable, operator and value of the expression in a row.

Customizing Business Rules

13-18 Oracle Banking Platform Extensibility Guide

Figure 13–14 Update Values

8. Save the updated rule using the save button in the left side menu.

Customizing Business Rules

Security Customizations 13-19

Figure 13–15 Save the Updated Rule

9. Commit the changes in the rule by clicking the commit button.

Customizing Business Rules

13-20 Oracle Banking Platform Extensibility Guide

Figure 13–16 Commit the Changes

13.9.2 Steps to Update the Business Rules in JDeveloper
Following are the steps to update the business rules in JDeveloper.

Step 1
Configure the JDeveloper in the customization option and the particular process jar
import as the SOA project in the customizable mode. The details of this step are
explained in this document in the section SOA customization.

Step 2
Expand the Business Rules folder of your project. You will see two .rules files in it. One
will be <<HumanTaskName>>Rules.rules file and the other will be
<<HumanTaskName>>RulesBase.rules file. Double Click and open the
<<HumanTaskName>>Rules.rules file. The existing approval stages and rulesets will
be available in the file.

Note: 'Ignore this participant' check box is available on the screen for
ignoring the specific stage. The particular stage is then ignored while
consideration of the rules implementation in the approval process.

Customizing Business Rules

Security Customizations 13-21

Figure 13–17 Expand Business Rules

Step 3
Create a new stage in the format 'ST<Stage Number>_PT1_RS' by clicking the '+'
button in the Rulesets. The new rules/decision table can be added to a stage.

Customizing Business Rules

13-22 Oracle Banking Platform Extensibility Guide

Figure 13–18 Create New Stage

Step 4
Add the new rule by clicking the '+' button on the stage. The existing rule can also be
added/modified in the existing stage.

Customizing Business Rules

Security Customizations 13-23

Figure 13–19 Add New Rule

Step 5
Populate the rule with the conditions in 'if' and 'then' block.

Customizing Business Rules

13-24 Oracle Banking Platform Extensibility Guide

Figure 13–20 Populate the New Rule

Step 6
Deploy the project jar as explained in this document in the section SOA customization.

Note: All the rules should have the final 'THEN' statement with the
return type as 'retract Task'. 'retract Task' makes sure that if the
condition of the rule is satisfied then the second rule should not be
evaluated else the flow will execute the entire ruleset. It is also
mandatory to have the last rule with the final 'THEN' statement as
'call IgnoreParticipant'. This is done to bring the control out of the
ruleset.

Customizing Business Rules

Security Customizations 13-25

Figure 13–21 Deploy Project Jar

Customizing Business Rules

13-26 Oracle Banking Platform Extensibility Guide

14

Loan Schedule Computation Algorithm 14-1

14Loan Schedule Computation Algorithm

OBP application provides the extensibility by which the additional loan schedule
computation algorithm can be added or customized based on client's requirement.

14.1 Adding a New Algorithm
For adding a new algorithm following additions need to be done.

LoanCalculationMethodType.properties contains list of available loan stage
algorithms in the system in the form of key-value pairs. For example, ARM=ARM

This list is used as part of screen LNM43 to populate a drop down called Computation
Formula.

An entry has to be made in this file to appear as a choice in the drop-down list.

Figure 14–1 Add New Algorithm

Adding a New Algorithm

14-2 Oracle Banking Platform Extensibility Guide

This screen is used to create a new Installment Rule. For example: ABC. We can choose
the new algorithm for the new rule.

Figure 14–2 Create New Installment

Screen LNM98 is used to create new schedule codes from existing instalment rules. A
new schedule code can be made using the new instalment rule created above.

A schedule generator class is created to implement a schedule code. The property file
ScheduleCalculator.properties stores this relation in the form:

Schedule_Type_Code=Schedule_Calculator_Class
If a new schedule generator class is created for the new schedule code above, an entry
in this file has to be made.

Example: IOI-EIPI-PMI_IntOnly-Month_Pr-Month_Ann=
com.ofss.fc.domain.schedule.loan.generator.NewPrincipalRepaymentScheduleGenerator;

The key is the SCHEDULE_CODE column in the table FLX_SH_SCHEDULE_TYPE_B.

The PrincipalRepaymentScheduleGeneratorFactory reads this property file and
creates an instance of the schedule generator class associated with the schedule type
code passed. The following code snippet shows how it is done

IPrincipalRepaymentScheduleGenerator calculator = null;
String calculatorClassName = calculators.get(scheduleTypeCode);
calculator = (IPrincipalRepaymentScheduleGenerator) ReflectionHelper.getInstance()
.getClassInstance(calculatorClassName);

// If schedule calculator is not found then do nothing

if (calculator == null) {

Adding a New Algorithm

Loan Schedule Computation Algorithm 14-3

calculator = new PrincipalRepaymentScheduleGenerator();
}

Currently, in the application this property file is empty and hence an instance of
PrincipalRepaymentScheduleGenerator is returned by default.

The new schedule generator class has to implement the interface
IPrincipalRepaymentScheduleGenerator which is the base for all schedule generators.

The important methods in it are:

public SortedMap<Integer, PrincipalRepaymentPeriod>
defineStages(SortedMap<Integer, PrincipalRepaymentPeriod> repaymentStages,
AccountScheduleAttributesDTO accountParameters, Money amountForScheduleGeneration,
Date onDate);
public LoanScheduleCalculatorOutputData defineSchedule(Date definitionDate,
SortedMap<Integer, PrincipalRepaymentPeriod> repaymentStages,
AccountScheduleAttributesDTO accountParameters, SortedMap<LoanInterestType,
List<NetRateDTO>> interestRates, Money mountForScheduleGeneration);
public LoanScheduleCalculatorOutputData generateRepaymentRecords(Date
generationDate, SortedMap<Integer, PrincipalRepaymentPeriod> repaymentSchedule,
AccountScheduleAttributesDTO accountParameters, Money totalPrincipalToRepay,
SortedMap<LoanInterestType, List<NetRateDTO>> interestRates,
List<PrincipalScheduleTransaction> scheduleTransactionHistory, SortedMap<Date,
PrincipalScheduleInterestBase> interestBaseHistory, SortedMap<Date, Money>
feeDetails);

The method generateAndSavePrincipalSchedule() of ScheduleApplicationService
creates and processes the instance of a schedule generator as follows:

IPrincipalRepaymentScheduleGenerator scheduleGenerator =
PrincipalRepaymentScheduleGeneratorFactory.getInstance().createScheduleGeneratorIn
stance(accountParameters.getScheduleTypeCode());

The methods in the schedule generator call the business logic for the instalment rules
(stage algorithms) part of the schedule code. This logic is written in a Stage generator
class. New Stage generator class has to be created for the new algorithm created above.

For example, EPIARMRepaymentStageGenerator.class is created for EPI and ARM.

This class has to implement interface IPrincipalRepaymentPeriodGenerator which is
the base for all stage generators. The important methods in it are:

public void defineStage(LoanRepaymentStageDTO repaymentStage);
public void define(LoanRepaymentStageDTO
repaymentStage,AccountScheduleAttributesDTO accountParameters,Date definitionDate,
List<NetRateDTO> interestRates, SortedMap<Integer, LoanRepaymentStageDTO>
allRepaymentStages, SortedMap<Date, PrincipalScheduleInterestBase>
interestBaseHistory, List<PrincipalScheduleTransaction>
scheduleTransactionHistory);
public SortedMap<Date, LoanRepaymentRecordDTO> generate(LoanRepaymentStageDTO
repaymentStageToBeGenerated, AccountScheduleAttributesDTO accountParameters, Date
generationDate, List<NetRateDTO> interestRates, SortedMap<Integer,
LoanRepaymentStageDTO> allRepaymentStages, SortedMap<Date, RepaymentDate>
repaymentDates, SortedMap<Date, LoanRepaymentRecordDTO> allRepaymentRecords,
SortedMap<Date, PrincipalScheduleInterestBase> interestBaseHistory,
List<PrincipalScheduleTransaction> scheduleTransactionHistory, SortedMap<Date,
Money> feeDetails);

Consuming Third Party Schedules

14-4 Oracle Banking Platform Extensibility Guide

The entry for the new Stage generator class has to be made in
StageCalculator.properties.

For example,
ARM=com.ofss.fc.domain.schedule.loan.generator.EPIARMRepaymentStageGenerator

The PrincipalScheduleRepaymentPeriodGeneratorFactory class reads this property
file and based on the installment rule passed as parameter creates an instance of its
corresponding stage generator class. The following code snippet shows it

IPrincipalRepaymentPeriodGenerator stageGenerator =
PrincipalScheduleRepaymentPeriodGeneratorFactory.getInstance()
.createStageGeneratorInstance(repaymentStage.getInstallmentRule())

14.2 Consuming Third Party Schedules
As mentioned above the PrincipalRepaymentScheduleGeneratorFactory reads the
property file ScheduleCalculator.properties which has entry for the schedule generator
class to be used for a schedule code. For using third party schedule algorithms, an
entry in this file has to be made against the required schedule codes.

IOI-EIPI-PMI_IntOnly-Month_Pr-Month_Ann=
com.ofss.external.ScheduleAlgoExt.XYZScheduleGenerator;

15

Receipt Printing 15-1

15Receipt Printing

OBP has many transaction screens in different modules where it is desired to print the
receipt with different details about the transaction. This functionality provides the
print receipt button on the top right corner of the screen which gets enabled on the
completion of the transaction and can be used for printing of receipt of the transaction
details.

For example, if the customer is funding his term deposit account, the print receipt
option will print the receipt with the details like Payin Amount, Deposit Term etc at
the end of the transaction. The steps to configure this option in the OBP application are
given in the following section.

15.1 Prerequisite
Following are the prerequisites for receipt printing.

15.1.1 Identify Node Element for Attributes in Print Receipt Template
The list of all the elements that are present in the particular task code screen and need
to be displayed in the printed receipt can be identified with the help of the VO object
utility. This utility helps in identifying all the node elements which are available on the
screen and can be used in the print receipt template. This utility VOObjectUtility can
be used to generate the data required for the functionality to work.

Once the utility is imported in the workspace, the input.properties file needs to be
updated with the location of module's UI, location of task flow directory, location of
config directory and the output directory where you want the output of the utility.

Prerequisite

15-2 Oracle Banking Platform Extensibility Guide

Figure 15–1 Input Property Files

In the build path of the utility, three libraries (commons-io, xalan and xmlparserv2)
need to be added as they are required for execution of the utility.

Figure 15–2 Build Path of Utility

Then the main method of the VOAttributesFinder.java class in the utility is executed.

Prerequisite

Receipt Printing 15-3

Figure 15–3 Utility Execution

On the execution of the utility, the Excel file is generated. The task codes can be filtered
in the Excel file for viewing different RTF node value of different attributes available
on the particular screen.

Figure 15–4 Excel Generation

15.1.2 Receipt Format Template (.rtf)
This template is used for defining the format of the output receipt. Different data
elements which need to be shown in the output receipt are mentioned in this RTF
report format template. The node will be taken from the above generated Excel file
from 'RTF Node' column for specifying the output value in the final output RTF.

Configuration

15-4 Oracle Banking Platform Extensibility Guide

The sample rtf template is shown below:

Figure 15–5 Receipt Format Template

15.2 Configuration
This section describes the configuration details.

15.2.1 Parameter Configuration in the BROPConfig.properties
Following configuration parameters are required to be set in the
BROPConfig.properties file.

■ receipt.print.copy: Set to ‘S’ (default) if Single receipt is required. Else, set to ‘M’
for multiple receipts. The receipt will be stored in current posting date
‘month/date’ folder structure.

■ receipt.base.in.location: Location for the RTF templates, which is configured as
‘config\receipt\basein\template\’ structure on the UI server. (For RTF
development purpose this location will also have the XML generated while
processing receipt.)

■ receipt.base.out.location: Location for generated receipt, which is configured as
‘config\receipt\baseout\’ structure on the UI server.

■ ui.service.url : UI URL http://IP:port format.

Implementation

Receipt Printing 15-5

15.2.2 Configuration in the ReceiptPrintReports.properties
This file contains the key value pair of the Task Code of the screen and the
corresponding template names, comma separated if more than 1 template is referred
by screen.

TaskCode=RTF Filename
Where TaskCode: task code of screen for which receipt print will be enabled and RTF
Filename: name of the RTF template which will be used for the creation of the output
with the same filename.

For example, TD002=FundTermDeposit

Figure 15–6 Receipt Print Reports

15.3 Implementation
The implementation for the print receipt functionality is explained in the following
steps:

1. Once the screen is opened, Template checks ‘ReceiptPrintReports.properties‘ file if
the Task code of the opened screen is present in the property file. The ‘Receipt
Print’ button will be rendered in a disabled state.

2. On successful completion of transaction (successful Ok click), Receipt Print button
gets enabled.

3. On click of Receipt Print button, all the VO’s on current screen are fetched and
created as a XML with data (for RTF development reference, this XML is not
deleted at the moment but on environments these will be deleted). The RTF and
XML merge up to create and open the receipt in the pdf format.

4. Receipt will be stored with the file name as <Logged in userId_TemplateName>

The sample output receipt in the PDF form is shown below:

Special Scenarios

15-6 Oracle Banking Platform Extensibility Guide

Figure 15–7 Sample of Print Receipt

15.3.1 Default Nodes
As per the functional specification requirement, some default nodes are already added
in the generated XML. The list of those nodes are as follows:

■ BankCode

■ BankShortName

■ BranchName

■ PostingDate

■ UserName

■ BankAddress

■ BranchAddress

■ LocalDateTimeText

15.4 Special Scenarios
There are some cases, where some of the attributes are not available in the VOs of the
screen and the value needs to be picked from the response of the transaction. There are
also some data values which need to be formatted first and then published in the PDF.

Special Scenarios

Receipt Printing 15-7

These values can be added to the pageFlowScope Map variable
'receiptPrintOtherDetailsMap'.

The population of those values needs to be done in the Backing Bean, after getting the
response of the transaction in the following manner:

MessageHandler.addMessage(payinResponse.getStatus());
receiptDetails.put("TransactionRefNo",payinResponse.getStatus().getInternalReferen
ceNumber());
SimpleDateFormat receiptTimeFormat = new SimpleDateFormat("hh:mm:ss a");
SimpleDateFormat receiptDateFormat = new SimpleDateFormat("dd-MMM-yyyy");
HashMap<String,String> receiptDetails = new HashMap<String, String>();
Date date=new Date(getSessionContext().getLocalDateTimeText());
receiptDetails.put("PostingTime",
receiptTimeFormat.format(date.getSQLTimestamp()));
if(payinResponse!=null && payinResponse.getValueDate()!=null) {
receiptDetails.put("ValueDate",receiptDateFormat.format(payinResponse.getValueDate
().getSqlDate()));
}
ELHandler.set("#{pageFlowScope.receiptPrintOtherDetailsMap}", receiptDetails);

Internally, the functionality adds all the details in map variable, other than VO's data.
While receipt printing, template checks the Map variable and if not null, it gets all the
key-value from the map and show them in XML which is used later on for generation
of receipt.

Special Scenarios

15-8 Oracle Banking Platform Extensibility Guide

16

Facts and Rules Configuration 16-1

16Facts and Rules Configuration

This chapter explains the facts and rules configuration details.

16.1 Facts
Fact (in an abstract way) is something which is a reality or which holds true at a given
point of time. Business rules are made up of facts.

A fact can be classified in two ways:

■ Literal Fact - Any number, text or other information that represents a value. It is a
fixed value. For example, 100, 2.95, "Mumbai"

■ Variable Fact - A fact whose value keeps changing over a period of time For
example, Account Balance, Product Type.

For example, If a customer maintains an Average Quarterly Balance of Rs.10,000 then
waive off his quarterly account maintenance fees. Here, the Average Quarterly Balance
is a variable fact while the Rs.10, 000 is a literal fact.

16.1.1 Type of Facts
There are two types of facts:

■ Direct Facts with input name value pair

■ Derived Facts

Services will be exposed for various operations on the facts. These services are broadly
classified into two types:

■ Fact Inquiry Service

■ Fact Derivation Service

For deriving the fact value, different type of datasource can be used:

■ Java DataSource - Derivation from Java class

■ HQL DataSource - HQL Query column

■ JDBC DataSource - SQL Query column

■ DbFunction DataSource - Derivation from database function

Fact Definition can be further categorized into:

■ Fact Value Definition - Definition to Derive Fact Value, It is used mostly in Rule
Execution

Facts

16-2 Oracle Banking Platform Extensibility Guide

■ Fact Enum Definition - Definition to Derive Permissible values for a fact. It is
used mostly in Rule Creation.

16.1.2 Facts Vocabulary
Facts Vocabulary is a list or collection of all facts pertaining to a specific field or
domain. A standard vocabulary of facts aids users in defining their business rules. For
example, the Facts Vocabulary of the Banking domain can contain common and
familiar facts such as Account Balance, Customer Type, Product Type, Loan-To-Value
Ratio. The Facts Vocabulary of the Cards domain may contain common facts such as
Total Credit Limit, Available Credit Limit, Available Cash Limit.

A vocabulary is defined for variable facts. Each fact has a definition and can have
source information.

Definition
The fact definition indicates common properties of the fact such as its name, its data
type, which domain, domain category and group it belongs to, key for retrieving value
and a brief description.

Variable facts would be defined for a domain and a domain category. Domain
categories are the sub-systems inside a domain. For example, Lending, Term Deposits,
Demand Deposits are the categories of Banking domain. There are some variable facts
which would be common across all the categories in a given domain. For example,
Customer and Bank data is common for all the categories of Banking domain. Such
facts can be classified under a special category called "Global".

The facts are further categorized under various groups. One fact can belong to one or
more Groups. For example, In a Banking domain, Customer Type, Birth Date, Gender
are Global facts belonging to the group Individual Customer Details. Account Balance,
Account Opening Date are facts in Lending category belonging to the group Account
Details. Loan-to-value (LTV) ratio, Sanctioned Amount are Facts in Lending category
and belong to multiple groups such as Consumer Loan, Home Loan, Agriculture Loan.
There are some variable facts which do not really fall into any specific group, such
facts are classified under a special group called "Others".

A variable fact value can be received as input from the consumer of eRules in the form
of key-value pair, the key here is defined as RetrievalKey. The fact will also have a data
source for value derivation in case the fact value is not an input.

Some variable facts can have a permissible list of values defined and the rule creator
will be restricted to use only those values which are defined in the permissible list of a
given fact. All facts will have a FactValueType defined as either Enumerated (indicates
that the fact has a permissible list of values) or OpenEnded (indicates that the fact value
is a free text). For facts with FactValueType as Enumerated, data source information will
be defined in the vocabulary to derive the list of values.

Variable facts will have a grouping based on BusinessDataType. For example, Variable
facts like Transaction Amount, Sanctioned Amount, and Disbursed Amount can be
grouped under "Amount". Variable facts like Available Balance, Book Balance belong
to "Balance" BusinessType and so on.

These BusinessDataType will in turn have PrimitiveDataType. For example, Amount
and Balance will have PrimitiveDataType as double.

With the help of BusinessDataType grouping a list of facts belonging to a particular
group can be displayed for user selection while defining rules, rate charts, policies and
so on. During actual rule execution the respective PrimitiveDataType (that is, int,
double, String and so on) of the BusinessDataType will be used.

Facts

Facts and Rules Configuration 16-3

Literal facts will only have a PrimitiveDatatype.

Source
Some facts can be derived, if they are not received as input. Also associated with some
facts is a list of permissible values for the fact at the time of rule/policy definition. All
these information forms the part of source data. The Fact Derivation layer is
responsible for deriving the value of a fact and the list of permissible values for the
fact based on source information defined in the vocabulary.

Deriving Enumeration (applicable list of values) for a Fact
A Variable fact can hold any value at a given point of time. But some can have a
standard set of applicable values defined and the value held by such facts would be
always within the range of this list of values.

For example, Account Balance as a variable fact can hold any value at a given point of
time, a set of values cannot be defined for such facts. Hence, no list of permissible
values will be defined for Account Balance. However, the variable fact Customer
Gender can have only one of two possible values namely - Male or Female.

While defining the rules, the permissible list of values will be derived for such facts
and user selection will be restricted to this list.

Deriving Value for a Fact
During rule execution, a set of fact information will be sent by the consumer of eRules
in the form of key-value pair. But this might not be a complete set of fact information
required for executing pricing rules. Hence some facts will have to be derived if they
are not received as input.

During rule execution, the required facts would be determined, value will be fetched
from RetrievalKey of the fact if received as input else the value will be derived.

16.1.3 Generation of Facts using Eclipse Plug-in
The fact objects can be generated either by populating the database tables directly or
by using the eclipse plug-in. This plug-in is created for fact generation purpose in OBP
application.

A local host server needs to be configured in eclipse before processing for
configuration of the fact plug-in. For fact generation purpose, the following steps need
to be followed.

Get the Fact Plugin from the development team.

Put the plugin (com.ofss.fc.util.plugin.fact_1.0.0.jar) in the plug-in folder of eclipse.

Restart Eclipse
1. In eclipse, go to Window -> Preferences.

Facts

16-4 Oracle Banking Platform Extensibility Guide

Figure 16–1 Select Window Preferences

2. Now in Preferences Window, go to OBP Plugin Development -> Fact.

Facts

Facts and Rules Configuration 16-5

Figure 16–2 Window Preferences - OBP Plugin Development

3. Enter the values as mentioned:

■ Application Server URL: Local Host Server Listener URL

Example: http: //localhost:9090/com.ofss.fc.channel.branch/HTTPListener

■ Presentation Server URL: Token Generator Application URL

Example: http: //127.0.0.1:8001/TokenGenerator/HTTPListener

If using the plug-in in local eclipse workspace, it will not be used, but a value
must be provided, you can use it from example value.

For security configured environment, it will be used, and then it should be
provided properly.

■ Bank Code: Bank code (Example: 08)

■ Branch Code: Branch Code (Example: 089999)

Facts

16-6 Oracle Banking Platform Extensibility Guide

■ User Id: username (Example: ofssuser)

■ Password: Password (Example: welcome1)

Figure 16–3 Enter the Preferences Fact values

4. Now click Apply, and then click Ok.

5. Open Fact.properties and modify:

■ aggregateCodeFilePath: The location of host workspace.

■ sourceFilePath: The location of src directory of com.ofss.fc.fact project.

Facts

Facts and Rules Configuration 16-7

Figure 16–4 Fact Properties - aggregateCodeFilePath

Figure 16–5 Fact Properties - sourceFilePath

6. Now start the Host server.

Facts

16-8 Oracle Banking Platform Extensibility Guide

7. In eclipse, go to Window -> Open Perspective -> Other.

Figure 16–6 Start Host Server

8. Now in Open Perspective window select Fact.

9. Click Ok.

Facts

Facts and Rules Configuration 16-9

Figure 16–7 Select Open Perspective value

It will open Fact Explorer perspective, where Fact Vocabulary is available.

Facts

16-10 Oracle Banking Platform Extensibility Guide

Figure 16–8 Fact Explorer

10. Now refresh and expand Fact Vocabulary. Expanding Fact Vocabulary will show
the Domain names.

Facts

Facts and Rules Configuration 16-11

Figure 16–9 Fact Vocabulary

Each Domain contains its Domain Category names.

Facts

16-12 Oracle Banking Platform Extensibility Guide

Figure 16–10 Domain Category

Each Domain category contain its Fact Groups

Facts

Facts and Rules Configuration 16-13

Figure 16–11 Fact Groups

Each Fact Groups contains its Facts.

Facts

16-14 Oracle Banking Platform Extensibility Guide

Figure 16–12 Facts

11. To see the details of any fact, just double-click it. The details will be shown in a fact
window containing some tabs. Move to each tab to show the details.

Figure 16–13 Business Definition Tab

Facts

Facts and Rules Configuration 16-15

Figure 16–14 Value Definition Tab

Facts

16-16 Oracle Banking Platform Extensibility Guide

Figure 16–15 Enum Definition Tab

Facts

Facts and Rules Configuration 16-17

Figure 16–16 Aggregrate Definition Tab

Facts

16-18 Oracle Banking Platform Extensibility Guide

Figure 16–17 Aggregate File Tab

12. Creating New Fact: Right-click any domain Category in which Fact is to be
created. Go to Maintenance -> Add.

Facts

Facts and Rules Configuration 16-19

Figure 16–18 Creating New Fact - Add

13. Enter required details for the facts in the new fact window.

All fields of Business definition tab are required for creation of any fact.

Fields of other tabs may be or may not be required. It depends on the fact to be
created.

Facts

16-20 Oracle Banking Platform Extensibility Guide

Figure 16–19 Creating New Fact - Fact Business Definition

Facts

Facts and Rules Configuration 16-21

Figure 16–20 Creating New Fact - Domain Group

14. Enter the values in the fields and press CTRL+S, click Yes to save and fact will be
created.

Figure 16–21 Saving New Fact

Business Rules

16-22 Oracle Banking Platform Extensibility Guide

Figure 16–22 Saving New Fact - Fact Added

15. Modification of Existing Fact: To modify an existing fact, right-click the fact ->
Maintenance -> Modify.

It opens the fact details in editable mode. Change whatever required and then save
it using 'CTLRL+S'.

Fact Perspective also provide following facilities:

■ Maintenance Operations on Fact

■ Add

■ Modify

■ Inquire

■ Fact Derivation Test

■ Fact Value Derivation Test

■ Fact Enum Derivation Test

■ Fact Import - Import Fact from File Store to Database store

■ Fact Export - Export Fact from Database store to File store.

16.2 Business Rules
Business Rules are defined for improving agility and for implementing business policy
changes. This agility, meaning fast time to market, is realized by reducing the latency
from approved business policy changes to production deployment to near zero time.
In addition to agility improvements, Business Rules development also requires far
fewer resources for implementing business policy changes. This means that Business
Rules not only provides agility, it also provides the bonus of reduced development
cost.

16.2.1 Rules Engine
A rule engine is a mechanism for executing 'business rules'. Business rules are simple
business-oriented statements that encode business decisions of some kind, often
phrased very simply in an if/then conditional form.

For instance, a business rule for a Banking system might be: Given a Customer and his
location, if all of the following conditions are met:- The Customer is High Net worth
Individual (HNI) - The Location is Metro - The Location is not Delhi{_}. The
consequence is a 20% Discount in Application fee for Home loan. These business rules
are not new: they are the business logic that is the core of many business software

Business Rules

Facts and Rules Configuration 16-23

applications. These rules are expressed as a subset of requirements. They are
statements like "give a twenty-percent discount to non-Delhi Metro HNI Customers"

The primary difference with a rule engine is the way these rules are expressed; instead
of embedding them within the program, these are encoded in business rule form.

Rule engines are not limited to execution; they often come with other tools to manage
rules. Enterprise Rule Engine has all the options such as creation, deployment, storage,
versioning and other such administration of rules either individually, or in groups.

16.2.2 Rules Creation by Guided Rule Editor
Any kind of rule can be created using this tool. User can freely enter business rules in
text area, throughout the rule creation tool.

Standard Rule created in GRE comprises of following elements:

[mandatory]
If
 [condition] {AND/OR [condition]}*
Then
 [Action]+
[optional]*
Else If
 [condition] {AND/OR [condition]}*
Then
 [Action]+
[optional]?
Else
 [Action]+
where
* = 0 or more Occurrence
?= 0 or 1 Occurrence
+= 1 or more Occurrence

Features of Guided Rule Editor (GRE)
The features of GRE are:

■ The 'if' block is mandatory block at the beginning of the structure.

■ If (true) kind of condition is not supported. The condition should be comprised of
'LHS operator RKH'. There is parenthesis support in the UI. But you have to add it
manually. Validation of parenthesis is supported.

■ Nested 'if' is not supported from UI as of now.

■ Conditions and actions are added by clicking the '+' button.

■ After adding Condition user can add 'AND/OR Condition' by clicking '+' button
at the End of Condition

■ Different types of Actions can be added under 'Then'.

■ Any number of 'Else if' can be added after 'If'.

■ The condition for 'Else if' should differ from its previous 'if' or 'Else if' condition.
Warning should be shown to user in this case.

■ At most one 'Else' condition can be added to this 'if-else if-else' structure.

■ No 'Else if' can be added after 'Else'.

■ Real time rule structure preview in the bottom panel.

Business Rules

16-24 Oracle Banking Platform Extensibility Guide

■ Rule template / fragment for re usability.

■ Facts will be used to create the rules

16.2.3 Rules Creation By Decision Table
Decision tables are a precise yet compact way to model complicated logic. Decision
tables, like if-than-else, associate conditions with actions to perform. But, unlike the
control structures found in traditional programming languages, decision tables can
associate many independent conditions with several actions in an elegant way.

Example:

The features of Decision Table are:

■ The decision table contains rows and columns. Each row is considered to be a rule.
In normal circumstances, the decision table is evaluated from top to bottom
sequentially evaluating the various rules. It does not stop even if a rule fires.
However, there is an option to stop processing of the decision table in case a rule is
satisfied. There should be a special fixed column in the decision table (towards the
right) which allows the decision table author to stop further evaluation of rules in
case the current rule fires.

■ Decision table should be expandable, that is, Rows and columns can be added
dynamically.

Various functions for column and row manipulation should be available:

■ Add Column After

■ Add Column Before

■ Add Row Above

■ Add Row Below

■ Delete Column

■ Delete Row

■ Move Column

■ Move Row

■ Sort Column Data Ascending

■ Sort Column Data Descending

■ Column Headers indicate condition / action

■ Decision table should be editable to input data/conditions/actions

If a condition or action has range the column should be split in to two columns to
accept the minimum and maximum values. Option to automatically fill series of

Table 16–1 Example of a Decision Table

Conditions & its alternatives Actions

Customer
Type Location Type Location Discount

HNI Metro Mumbai 20% of App. fee

HNI Metro Delhi No discount

HNI Jaipur No discount

Business Rules

Facts and Rules Configuration 16-25

values. When clicked on row, a brief description about the condition should appear.
Decision table will have brief description for the conditions and actions setup. Import
and export data between Decision Table and Excel Spread Sheet.

16.2.4 Rules Storage
Rules created are stored in database tables as conditions and actions first, then these
database tables are used to create executable rule in java programming language and
compiled.

16.2.5 Rules Deployment
Rules are put together in compiled java class which are stored in jar file and deployed
on the server at runtime. This deployed jar is available for applications which are
going to execute the rules.

16.2.6 Rules Versioning
Each time rule is modified new version is created for the rule and stored.

Table 16–2 Actions

ActionID Outvariable Expression Datatype

ACTION1 Discount Fee 0.2*App Fee Double

ACTION2 Discount Fee 0 Double

ACTION3 Discount Fee 0 Double

Table 16–3 Conditions

Conditio
nID LeftExpression

Relation
alOperat
or

RightExp
ression

LinkedC
onditionI
D

LinkedC
ondition
alOperat
or ActionId RuleID Version

CON1 CustomerType == HNI CON2 && ACTION
1

RULE1 1

CON2 LocationType == METRO CON3 && RULE1 1

CON3 Location == MUMBAI RULE1 1

CON4 CustomerType == HNI CON5 && ACTION
2

RULE1 1

CON5 LocationType == METRO CON6 && RULE1 1

CON6 Location == DELHI RULE1 1

CON7 CustomerType == HNI CON8 && ACTION
3

RULE1 1

CON8 Location == JAIPUR RULE1 1

Table 16–4 Rules Versioning

RuleID Version Name Effective Date

RULE1 1 DiscountRule 01/01/2009

RULE1 2 DiscountRule 31/03/2009

Rules Configuration in Modules

16-26 Oracle Banking Platform Extensibility Guide

16.3 Rules Configuration in Modules
Rules can be configured for multiple modules and multiple screens. The list of screens
where the rule definition taskflows are used is mentioned below:

■ Facts are used by configuring the fact context. Fact Context contains information
about interacting Module. This need to be set to interact with Fact layer. Fact
Context has been categorized at Domain Level.

For example, BankingFactContext will be used in Banking domain. This context
has setters method for Facts which are generic in that domain. For example,
BankingFactContext has setAcountId method. Interacting module need to fill
maximum information available. These methods are setters for Facts which will
always has input like AccountId, PartyId, TransactionAmount and so on.

■ It is possible that at the time of interaction, Module already has some derivable
Facts which are not going to change in the interaction. For example,
LnAccountProduct at the time of Interest calculation.

■ Module will send such Facts using addFact method, using _retrievalKey of the Fact
referring Fact vocabulary. The benefit of sending such facts is these Facts won't get
derived again. At the time of Fact Derivation, if RetrievalKey is present in the input
FactMap, same value will be returned as a Fact value. If RetrievalValue is not
present the Fact will be derived.

■ Module will send maximum Fact information available at the time of interaction
for better performance.

For example, at the time of Loan Account Opening, Pseudo code will look like:

// create fact context.
BankingFactContext lnFactContext = new BankingFactContext("LN");
lnFactContext.setPartyId(001);
// Set max available information
lnFactContext.addFact("LnAppliedAmount",2000);
lnFactContext.addFact("LnProductType","Home");
lnFactContext.addFact("LnRiskCategory",1);
lnFactContext.addFact("CustType","VIP");

At the time of CashTransaction Event, code will look like:

// create fact context.
BankingFactContext casaFactContext = new BankingFactContext("CASA");
casaFactContext.setPartyId(003);
casaFactContext.setAcountId("111111111111");
casaFactContext.setTransctionAmount(new BigDecimal(122));
casaFactContext.setTransactionCurrency(104);
casaFactContext.setTransactionAmountInAcy(new BigDecimal(122));
// Set max available information
casaFactContext.addFact("CustType", "VIP");
casaFactContext.addFact("CASAAccountType", "Saving");

16.3.1 Generic Rules Configuration
Generic Rules can be configured through the screen RL001 where the new rule can be
defined or the existing rule can be updated for multiple domains and domain category.
The authoring mode of rule creation can be chosen as GRE or Decision Table.

Rules Configuration in Modules

Facts and Rules Configuration 16-27

Figure 16–23 Generic Rule Configuration

Rules Configuration in Modules

16-28 Oracle Banking Platform Extensibility Guide

Figure 16–24 Rule Author - Decision Table

Different expressions can be defined in the expression builder screen. The expression
once defined can also be used as one of the expressions in GRE.

Rules Migration

Facts and Rules Configuration 16-29

Figure 16–25 Rule Author - Expression Builder

16.4 Rules Migration
This section describes the rules migration.

16.4.1 Rules Configured for Modules
Rule taskflows can be added to different modules. User can set up different rules
based on the screen requirements.

Rules Migration

16-30 Oracle Banking Platform Extensibility Guide

Table 16–5 Details of Configured Rules in Modules

Module Screen Rule Type Rule Description

Alerts AL04 - Alert
Maintenance

GRE User can create the new message template rule or use the existing
rule. In this rule, the message template of the alert is selected based
on the selected rule criteria.

For example, if there is a particular party id, then the specific alert
needs to be sent.

Content CNM03 -
Document
Policy
Definition

Decision
Table

There are two types of rules (Inbound Rule and Outbound Rule)
defined for each event in the document policies. These rules
primarily define the checklist of documents based on different input
values. The inbound rule are defined for the scenario of the
documents being inputted to the system and the outbound rule are
defined for the scenario of the documents being retrieved from the
system and displayed to the end user.

For example, In document policy of new applications, there is a
event for identity verification. The inbound rule can be defined for
the category of the documents which are required to be uploaded for
the verification purpose on the basis of the Party Agency Type and
the Party Type.

Pricing PR006 -
Price
Definition

Generic Rule
Author

Price can be rule based that is, amount of fee to be charged or price
code to be charged comes from rule

Pricing PR005 -
Interest/Mar
gin Index
Code
Definition

Generic Rule
Author

Interest Index can be Rule Based i.e. Interest rate to be applied comes
as outcome of rule.

Pricing PR004 - Rate
Chart
Maintenance

Generic Rule
Author

Rate Chart can be Rule Based i.e. Interest index to be used comes as
outcome of rule.

Pricing PR007 -
Price Policy
Chart
Maintenance

Decision
Table

Price policy chart internally gets stored as Rule. It basically defines
Prices/RateCharts applicable when criteria is satisfied which is
mentioned in rule.

Pricing PR040 - Fee
Computatio
n Analysis

Generic Rule
Author

This screen provides analysis as how the fee for particular
transaction (happened in past) was computed.

In case of Rule Based Fees charged in transaction, this screen
displays details of that rule along with input fact values used during
rule evaluation.

Pricing PR017 -
Interest Rate
Derivation
Analysis

Generic Rule
Author

This screen provides analysis as how the interest rate for particular
account was computed.

In case of Rule Based Rate Chart and Rule Based Index, this screen
displays details of that rule along with input fact values used during
rule evaluation.

Tax TDS01 - Tax
Parameter
Maintenance

Decision
Table

This rule is used to maintain the exemption limit and that exemption
limit will be used at the time of tax computation.

Rules Migration

Facts and Rules Configuration 16-31

Product
Manufacturi
ng

PM011 -
Define
Interest Rule

GRE/
Decision
Table

In the Rule and Expression task flow is consumed to create Rule or
Expression which is used to derived the BaseForInterest for
Calculation of Interest.

During EOD, module send facts which is used derive the
BaseForInterest by executing the Rule or Expression whichever is
attached to the IRD.

Asset
Classificatio
n

RL001 - Rule
Author

GRE This rule is used to derive the Asset Classification code of an account
during the Account level classification batch shell. The facts will be
the days past due date of various outstanding arrears. The rules will
be created under 'LN' and 'CS' and linked to a plan in Asset
Classification Plans (NP002).

Rule for Facility-level classification: This rule is maintained only if
the 'Applicability level' in NP001 is 'Facility'. This rule is used to
derive the Classification code for a Facility during the Facility-level
batch classification. The rule will be created under the Domain
Category 'AC' and is linked via Asset Classification Preference
(NP001).

Collections RULE01 -
RuleSet

GRE/Decisi
on Table

Collection module's rules are defined as RuleSet. The RuleSet can be
incorporated for the batch processing to filter accounts coming to
collection.

In RuleSet screen, multiple rules can be combined together as a
single object called ruleset. The RuleSet functionality in rule engine
provides the user with the facility to design the sequence of
execution of rules where multiple rules need to be asserted for the
same set of inputs. User would be able to select and wire the already
existing rules and their sequence as per his/her requirement.

There can be output dependent rules defined. For example,

Rule 1 is: If(FACILITY_ID equal to TEST_FACILITY_ID)

Then Account Type equal to FIXED

Else If (FACILITY_ID equal to AAA)

Then Account Type equal to 0

Rule 2 is: If (ACCOUNT_TYPE equal to FIXED)

Then ARS_ASSESSED_AMOUNT equal to 70000

In the above case, rule 2 will be executed only if rule 1 satisfies the
condition.

Table 16–5 (Cont.) Details of Configured Rules in Modules

Module Screen Rule Type Rule Description

Rules Migration

16-32 Oracle Banking Platform Extensibility Guide

17

Composite Application Service 17-1

17Composite Application Service

OBP Application provides with the functionality of adding composite application
services which call multiple application services in one request. The transactions in
these composite application services are called composite transactions and are made
by composing the single transaction out of the multiple APIs transaction that gives the
effect of single transaction.

Using APIs, single transaction can be composed of multiple transactions using very
little effort. However, this cannot be done at run time. Following points have to be
taken in to account while making a new composite transaction out of existing API
transactions:

■ Both the transactions should be passed in the same session context except
overridden warnings. Overridden warnings from one transaction are passed as an
input to next transaction.

■ Decision of whether to commit the transaction or rollback the same must be
explicitly handled by the composite transaction. The beginning and closing of
interaction should be handled by the composite transactions.

For the transaction control of the transaction manager, there are two defined
patterns:

– With Interaction.begin

* The interaction begins to ensure that the transaction reference number is
maintained same across all participating APIs

* Required for supporting reversal of composite financial APIs

* Context information for entire call is maintained and used.

* Similar to any other API

– With TransactionManager

* Scope restricted to database transaction

* All APIs in the composite have the same commit scope

* Unique transaction reference generated for each API

* Can be thought of as a workflow with APIs participating in the same DB
commit scope

* The composite transactions can be handled in two scenarios:

- Calling multiple APIs in the same module

- Calling multiple APIs in different modules by making the adapter call

Composite Application Service Architecture

17-2 Oracle Banking Platform Extensibility Guide

17.1 Composite Application Service Architecture
The following depicts the sequence diagram for the composite transactions where two
of the domain service calls are shown which can be extended to multiple domain
service (1..N) calls. After every domain service call, 'isTransactionFailure()' call needs
to be made to check the transaction status before proceeding for the next domain
service call.

Figure 17–1 Composite Application Service Architecture

17.2 Multiple APIs in Single Module
For writing the composite service API which calls multiple services API, the following
Java classes are needed with respect to new services as mentioned in the below table:

Table 17–1 Java Classes

Class Name Description

Composite Service
Interface

This provides the method definitions for the composite services.

Composite Service Class This provides the implementation class for the composite services. In this class, we
write methods which make the calls to different service APIs. The response of one
service API can be used for making calls in another service APIs. The final response
of the composite service is then created with the response objects of other service
APIs and then transferred back to the adapter calls.

Multiple APIs in Single Module

Composite Application Service 17-3

One of the sample composite service method 'TDAccountPayinApplicationService.
openAccountWithPayin' is shown below. In this service method, there are two
methods of two different services:

■ tdAccountApplicationService.openAccount

■ tdDepositApplicationService.openDeposit

These service methods are called where the new account is created and then the
returned account id from first service is used to do the payin by creating a new deposit
for that account.

package com.ofss.fc.app.extensibility.td.service.composite;
import java.util.logging.Level;
import java.util.logging.Logger;
import com.ofss.fc.app.AbstractApplication;
import com.ofss.fc.app.Interaction;
import com.ofss.fc.app.agent.dto.agent.AgentArrangementLinkageDTO;
import com.ofss.fc.app.context.SessionContext;
import com.ofss.fc.app.extensibility.td.dto.composite.TDAccountPayinResponse;
import
com.ofss.fc.app.extensibility.td.service.composite.ext.IExtendedTermDepositApplica
tionServiceExtExecutor;
import com.ofss.fc.app.td.dto.account.TermDepositAccountOpenDTO;
import com.ofss.fc.app.td.dto.account.TermDepositAccountResponse;
import com.ofss.fc.app.td.dto.deposit.PayinResponse;
import com.ofss.fc.app.td.dto.transaction.payin.PayinTransactionDTO;

import com.ofss.fc.app.td.service.account.ITermDepositAccountApplicationService;
import com.ofss.fc.app.td.service.account.TermDepositAccountApplicationService;
import com.ofss.fc.app.td.service.deposit.DepositApplicationService;
import com.ofss.fc.app.td.service.deposit.IDepositApplicationService;
import com.ofss.fc.common.td.TermDepositTaskConstants;
import com.ofss.fc.enumeration.MaintenanceType;
import com.ofss.fc.infra.exception.FatalException;
import com.ofss.fc.infra.exception.RunTimeException;
import com.ofss.fc.infra.log.impl.MultiEntityLogger;
import com.ofss.fc.service.response.TransactionStatus;
/**
 * The TDAccountPayinApplicationService class exposes functions/services to
perform the sample of composite operations. This extensibility sample services
includes: opening account and deposit
 * @author Ofss
 */
public class ExtendedTermDepositApplicationService extends AbstractApplication
implements IExtendedTermDepositApplicationService {
/**
* Extension point for the class. This is the factory implementation for the
extension of this class.
 * Any extension-method call on this factory instance, internally triggers a call
to corresponding

Executor Interface This provides the extension pre-hook and post-hook method definitions for the
service calls.

Executor Classes This provides the implementation class for the executor interface.

Composite API Response
Object

This provides the final response object which is passed to the adapter calls.

Table 17–1 (Cont.) Java Classes

Class Name Description

Multiple APIs in Single Module

17-4 Oracle Banking Platform Extensibility Guide

 * extension methods of all the extension classes returned by the
ServiceExtensionFactory
*/
private transient IExtendedTermDepositApplicationServiceExtExecutor extension;
 // This attribute holds the component name
private final String THIS_COMPONENT_NAME =
ExtendedTermDepositApplicationService.class.getName();
/**
 * This is an instance variable and not a class variable (static or static final).
This is required to
* support multi-entity wide logging.
*/
private transient Logger logger =
MultiEntityLogger.getUniqueInstance().getLogger(THIS_COMPONENT_NAME);
/ Create instance of multi entity logger
private transient MultiEntityLogger formatter =
MultiEntityLogger.getUniqueInstance();
/**
* @param sessionContext
* @param termDepositAccountOpenDTO
 * @return TermDepositAccountResponse
* @throws FatalException
*/
public TDAccountPayinResponse openAccountWithPayin(SessionContext sessionContext,
TermDepositAccountOpenDTO termDepositAccountOpenDTO,
PayinTransactionDTO payinTransactionDTO,
AgentArrangementLinkageDTO agentArrangementLinkageDTO
) throws FatalException {
super.checkAccess("com.ofss.fc.app.td.service.composite.TDAccountPayinApplicationS
ervice.openAccountWithPayin", sessionContext, termDepositAccountOpenDTO,
payinTransactionDTO,
agentArrangementLinkageDTO);
if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE, formatter.formatMessage("Entered into
openAccountWithPayin(). Input : termDepositAccountOpenDTO %s ",THIS_COMPONENT_
NAME, termDepositAccountOpenDTO.toString()));
}
Interaction.begin(sessionContext);
TransactionStatus transactionStatus = fetchTransactionStatus();
TermDepositAccountResponse tdAccountResponse = null;
String newAccountId = null;
PayinResponse payinResponse = null;
TDAccountPayinResponse tdAccountPayinResponse = new TDAccountPayinResponse();
ITermDepositAccountApplicationService tdAccountApplicationService
= new TermDepositAccountApplicationService();
IDepositApplicationService tdDepositApplicationService= new
DepositApplicationService();
try {
 Interaction.markCurrentTask(TermDepositTaskConstants.TD_ACCOUNT_ATTRIBUTE);
 createTransactionContext(sessionContext, MaintenanceType.ADDITION);
 extension.preOpenAccountWithPayin(sessionContext, termDepositAccountOpenDTO,
payinTransactionDTO, agentArrangementLinkageDTO);
 termDepositAccountOpenDTO.setBankCode(sessionContext.getBankCode());
 if (logger.isLoggable(Level.FINE)) {
 logger.log(Level.FINE, formatter.formatMessage("Entered into
tdAccountApplicationService.openAccount().
 Input : termDepositAccountOpenDTO %s ",THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
 }
 tdAccountResponse = tdAccountApplicationService.openAccount(sessionContext,

Multiple APIs in Single Module

Composite Application Service 17-5

termDepositAccountOpenDTO);
 if (logger.isLoggable(Level.FINE)) {
 logger.log(Level.FINE, formatter.formatMessage("Exiting from
tdAccountApplicationService.openAccount().
Input : termDepositAccountOpenDTO %s ", THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
 }
 if(tdAccountResponse!=null && tdAccountResponse.getAccountId()!=null &&
!Interaction.isTransactionFailure(transactionStatus)) {
 newAccountId = tdAccountResponse.getAccountId();
payinTransactionDTO.getAccountTransactionDTO().setAccountId(newAccountId);
 if (logger.isLoggable(Level.FINE)) {
Logger.log(Level.FINE, formatter.formatMessage("Entered into
tdDepositApplicationService.openDeposit().
Input : payinTransactionDTO %s ", THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
 }
 payinResponse = tdDepositApplicationService.openDeposit(sessionContext,
payinTransactionDTO, agentArrangementLinkageDTO);
 if (logger.isLoggable(Level.FINE)) {
logger.log(Level.FINE,formatter.formatMessage("Exiting from
tdDepositApplicationService.openDeposit().
Input : payinTransactionDTO %s ",THIS_COMPONENT_NAME,
termDepositAccountOpenDTO.toString()));
 }
 if (payinResponse != null) {
tdAccountPayinResponse.setAccountId(payinResponse.getAccountId());
tdAccountPayinResponse.setDepositId(payinResponse.getDepositId());
tdAccountPayinResponse.setDepositStatus(payinResponse.getDepositStatus());
tdAccountPayinResponse.setNetInterestRate(payinResponse.getNetInterestRate());
tdAccountPayinResponse.setAccountingEventItem(payinResponse.getAccountingEventItem
());
tdAccountPayinResponse.setMaintenanceType(payinResponse.getMaintenanceType());
tdAccountPayinResponse.setMaturityAmount(payinResponse.getMaturityAmount());
tdAccountPayinResponse.setProductCode(payinResponse.getProductCode());
tdAccountPayinResponse.setInterestStartDate(payinResponse.getInterestStartDate());
tdAccountPayinResponse.setValueDate(payinResponse.getValueDate());
tdAccountPayinResponse.setStatus(payinResponse.getStatus());
 }
 }
 extension.postOpenAccountWithPayin(sessionContext,
termDepositAccountOpenDTO, payinTransactionDTO, agentArrangementLinkageDTO);
 fillTransactionStatus(transactionStatus);
 tdAccountPayinResponse.setStatus(transactionStatus);
 } catch (FatalException fatalException) {
 logger.log(Level.SEVERE, formatter.formatMessage("FatalException from
openAccountWithPayin()"), fatalException);
 fillTransactionStatus(transactionStatus, fatalException);
 } catch (RunTimeException fcrException) {
 logger.log(Level.SEVERE, "RunTimeException from
openAccountWithPayin()", fcrException);
 fillTransactionStatus(transactionStatus, fcrException);
 } catch (Throwable throwable) {
logger.log(Level.SEVERE, "Throwable from openAccountWithPayin()", throwable);
 fillTransactionStatus(transactionStatus, throwable);
 } finally {
 Interaction.close();
 }
 super.checkResponse(sessionContext, payinResponse);
 if (logger.isLoggable(Level.FINE)) {

Multiple APIs in Single Module

17-6 Oracle Banking Platform Extensibility Guide

 logger.log(Level.FINE, formatter.formatMessage("Exiting from
openAccountWithPayin()."));
 }
 return tdAccountPayinResponse;
 }
}

18

ID Generation 18-1

18ID Generation

OBP is shipped with the functionality of generation of the IDs in three ways that is,
Automatic, Manual and Custom. These three configurations can be defined by the user
as per their requirements:

■ If the configuration type for the ID generation is set to automatic, the ID is
generated as per the defined generation logic for the automated ID generation.
You can set the pattern, sequence, weights and check digit modulo and modify the
automatic generation logic.

■ If the configuration type is set to manual then the ID will be input and it will be
checked in the database if it is unique. For the ID, a certain range of serial numbers
can be reserved in the range table by the custom developer and the teller can select
it from amongst the ranges while doing the manual entry.

■ In case the bank's requirement is to have the different ID generation process which
can be written or modified, then the extensibility feature is provided in OBP. In
this feature, customized ID generation logic can be written and can be plugged in
the OBP application by creating the custom ID generation class and doing the
required configurations in the database.

The configuration of the ID generation process is shown in the sequence diagram
below where the generator is selected based on the set configuration type.

Database Setup

18-2 Oracle Banking Platform Extensibility Guide

Figure 18–1 Configuration of ID Generation Process

From the implementation perspective, the following sections describe the change in
configurations required for customizing the ID generation.

18.1 Database Setup
The configuration part of the ID generation requires the following components which
need to be defined in the OBP application. The following tables are involved to store
the generation logic details for ID generation:

■ FLX_CS_ID_CONFIG_B: This is the main config table where the identifier is
defined with the combination of the category and sub category columns. The type
of generation logic is determined based on the configuration set in the CONFIG_
TYPE column of this table.

Table 18–1 FLX_CS_ID_CONFIG_B

Column Name Description

CATEGORY_ID Represents the Category Example: Party,Origination, DDA and so on

SUB_CATEGORY_ID Represents the Sub Category Example: PartyId, AccountNo and so on

PATTERN_TXT Represents the pattern in which the ID is generated Example: SSSSSSSSC,
NNNBBBBYYYYSSSSSSS

CONFIG_TYP Represents Generation type values are AUT for Automatic, MAN for
Manual, CUS for Custom

GENERATOR_CLASS_NAME Fully Qualified classname of ID generator for config type Custom

SEQ_VALUE Running Serial Number

WEIGHT Comma separated Weight for each character defined in the pattern text
Example: '0,0,7,6,5,4,3,2', '3,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1'

CHK_DIGIT_MODULO Check digit modulo

CREATED_BY Indicates the User who created the row

Automated ID Generation

ID Generation 18-3

■ FLX_CS_ID_RANGE: This table is used to determine the range of the values
which the ID can take.

■ FLX_CS_ID_USF: This table is used to determine the user selected fields for the ID
generation logic.

18.1.1 Database Configuration
In case of existing ID generation logic in the database, end user can update the seed
data scripts by modifying configuration type and other parameters (pattern, sequence,
weight and check digit modulo). While in case of new type of ID generation logic, an
insert sql can be added in the scripts of tables.

18.2 Automated ID Generation
For the configuration type as automatic, user needs to set the CONFIG_TYPE as
"AUT" in the FLX_CS_ID_CONFIG_B table. The ID generation logic is determined
based on the set values in the config table for the pattern, sequence, weight and check
digit modulo. The three attributes 'sequence', 'weights' and 'check digit modulo' are
primarily used for calculation of the check digit.

CREATION_DATE Indicates the date and time of the creation of the row

LAST_UPDATED_BY Indicates the User who last updated the row

LAST_UPDATE_DATE Indicates the date and time of the last update of the row

OBJECT_VERSION_NUMBER Indicates the version number, Used to implement optimistic locking

OBJECT_STATUS_FLAG Status Flag Example: A

Table 18–2 FLX_CS_ID_RANGE

Column Name Description

RANGE_ID Represents the identifier for the range definition

RANGE_NAME Represents the name defined for the range Example: Party, DDA

RANGE_START Defines the beginning value for the range

RANGE_CURRENT Defines the current value for the range

RANGE_END Defines the ending value for the range

CATEGORY_ID Represents the Category defined in FLX_CS_ID_CONFIG_B

SUB_CATEGORY_ID Represents the Sub Category defined in FLX_CS_ID_CONFIG

Table 18–3 FLX_CS_ID_USF

Column Name Description

USF_ID Represents the identifier for the user selected fields

USF_NAME Represents the name for the user selected fields

IS_FIXED_FLAG Defines if the user selected fields are fixed

CATEGORY_ID Represents the Category defined in FLX_CS_ID_CONFIG_B

SUB_CATEGORY_ID Represents the Sub Category defined in FLX_CS_ID_CONFIG_B

Table 18–1 (Cont.) FLX_CS_ID_CONFIG_B

Column Name Description

Automated ID Generation

18-4 Oracle Banking Platform Extensibility Guide

ID Generation with Sequence and Range
ID is picked using the database sequence. This is needed in the case where serial
number is used as part of an ID. Database sequence is used to avoid deadlock while
trying to update, a sequential value stored and retrieved as part of the configuration
in-case where the application is multiple threaded. This might lead to ’gaps’ in the
sequence of ids generated, if an exception occurs in the Transaction. However, this
suffices as the errors related to deadlocks are mitigated.

For the first call to derive the value, the sequence for the specific configuration pattern
is created, with names as CATEGORYTYPE_SUBCATEGORYTYPE_SEQ. The creation
of this sequence happens only once in the lifecycle of application deployment. For
example, TD (category) and AccountId (sub-category), the sequence generated is TD_
ACCOUNTID_SEQ. And, for the successive requests, the already created sequence is
used for sequence generation.

ID Generation with Pattern Text
The pattern text is split and an array is created of the characters. In case of mask ID
configuration's pattern, ID configuration's text patterns are split. If the value is found
to contain the special character (out of range [65-90]), it will be appended as it is to
generated ID. Following are the conditions of ID generation with pattern text:

■ If the pattern value is not the special character and the ID value is 'S' that is,
SerialNumber, then range is looked upon:

– If the range is defined, the current position of the range is determined based
on category and sub-category. If the current position value's length is greater
than pattern length, then characters between [0-length of pattern] will be
generated ID, else zeros are prefixed before current position value of range
until it's size becomes pattern's length. For example, the pattern is 'SSSSSS' and
the generated range gives the value as '2345' then the actual value will become
'002345'.

– If range is not defined, then next value from sequence category_subCategory_
SEQ is picked, it'll also be corrected to the size of pattern's length as
mentioned in case of above example.

■ If the pattern value contains 'C', that is, check digit. Check digit computation is
done and then appended the computed value to the pre computed ID value. The
input value, weight and check digit modulo are used for calculation of check-digit.
The input value can be sequence ID or can be the ASCII value in case the inputs
are characters. The weights will be comma separated string of the digits to be used
for the calculation.

■ If the pattern value contains 'R', related party identifier is used for that value.

■ If the pattern value doesn't match any of the above character, the value is fetched
from the pattern map for the pattern's ID and the length is adjusted to the pattern's
attribute length. These pattern map characters need to be passed by the caller
service for calculation.

For example, let us take the submissionId with the pattern as
NNNYYYYBBBSSSSS in the database.

Automated ID Generation

ID Generation 18-5

Figure 18–2 Automated ID Generation - Single Record View

The pattern hashmap 'value' will be populated and passed by the caller with the
key value pair as pattern character as key and its corresponding value. As shown
below, 'N' will contain name value, 'Y' will contain year value and 'B' will contain
branch code.

Figure 18–3 Automated ID Generation - Generate Submission ID

Custom ID Generation

18-6 Oracle Banking Platform Extensibility Guide

Figure 18–4 Automated ID Generation - Submission ID Generation Service

The ID will be generated by the automatic generator with first three characters as
name, next four digits as year, next three characters of branch and rest with
generated sequence as per the mask pattern.

In case of without mask configuration's pattern. If range ID is -1, it means that
there is no range defined for the mask configuration, it then picks up the range
details with range ID based on the category and sub-category. The generated ID
will become the current position of range. If range is not defined in the table, then
the sequence needs to be defined and the value is picked based on that. The next
value of the sequence will become the generated ID value.

18.3 Custom ID Generation
In case of configuration type as custom, user needs to set the CONFIG_TYPE as ’CUS’
in the CONFIG_TYP column in the FLX_CS_ID_CONFIG_B table.

User can customize the ID generator by writing a new custom ID generator class
which will need to extend the IdGenerator and write the abstract methods for the ID
generation. This class needs to be mentioned in the GENERATOR_CLASS_NAME
column of FLX_CS_ID_CONFIG_B table.

Custom ID Generation

ID Generation 18-7

Figure 18–5 Custom ID Generation - Custom ID Generator

In case the user want to write the custom generation logic in a specific customized
pattern definition, then user can do that by writing the custom constant class and the
custom pattern class which can pick the defined pattern from the configuration object
set in the PATTERN_TXT column of the FLX_CS_ID_CONFIG_B table of the database.
The user will pass the values in the pattern hashmap which will then populate the
pattern and generate the ID.

Custom ID Generation

18-8 Oracle Banking Platform Extensibility Guide

Figure 18–6 Custom ID Generation - Custom ID Generation Constants

Figure 18–7 Custom ID Generation - Custom Pattern Based Generator

19

Extensibility of Domain Objects - Dictionary Pattern 19-1

19Extensibility of Domain Objects - Dictionary
Pattern

This chapter describes how consultants or other third parties can extend OBP domain
by leveraging the dictionary design pattern to extend any Abstract Domain Object on
which a maintenance screen and corresponding services are supported by product and
are shipped for a release. This pattern provides true domain model extension
capabilities by allowing addition of custom data fields to the underlying domain
objects and the database tables mapped to them. Such capability alleviates an
important limitation in the earlier approach of using User Defined Fields (UDF) to
extend the OBP data model. In the UDF approach, the data model for the custom fields
is separate from that of the domain objects itself and hence cannot be consumed in
business policies or even rules as facts. The dictionary pattern enables using the
custom data fields in the extensions, business rules (as facts) and custom business
policies as the domain object load from the database retrieves the extended domain
object and not just the product domain object.

The framework related changes to make such support available are supported from
release 2.3 of the Oracle Banking Platform. These changes have been made across
layers including the UI, JSON, Assembler, ORM and DB layer. The changes required to
be made by consulting to support the persistence and usage of the extra attributes by
extending the product domain object have been discussed in detail in the sections by
taking common domain extensibility use cases as examples. The process in which data
is transferred from the UI layer, to the host layer is mentioned briefly as points below:

■ The proxy layer provides an extension point wherein the additional data fields on
the screen can be populated as name value pairs and set in the input request.

■ The custom attribute data gets passed through the JSON layer onto the
middleware host as part of the application service invocation.

■ These name value pairs are translated into the custom domain object which
extends the base OBP domain object.

■ The custom fields get persisted into the DB along with the domain object fields as
part of ORM mapping.

■ Exact opposite flow follows for inquiry services in which the data flows back via
output response.

Customized Domain Object Attribute Placeholders

19-2 Oracle Banking Platform Extensibility Guide

Figure 19–1 Extensibility of Domain Objects - Framework

The dictionary data is passed in the request DTO and is therefore available as part of
the pre and post application service extensions. The above process is described in
detail in the sections below.

19.1 Customized Domain Object Attribute Placeholders
Data transfer object (DTO) is a design pattern used to transfer data between an
external system and the application service. All the information may be wrapped in a
single DTO containing all the details and passed as input request as well as returned
as an output response. The client can then invoke accessor (or getter) methods on the
DTO to get the individual attribute values from the Transfer Object. All request
response classes in OBP application services are modelled as data transfer objects.
These objects extend a base class DataTransferObject which holds an array of
Dictionary object. The Dictionary encapsulates an array of NameValuePairDTO which
is used to pass data of custom data fields or attributes from the UI layer to the host
middleware. The following is mentioned as points below:

■ All DTO classes should extend DomainObjectDTO class.

■ The DomainObjectDTO class has been made to extend DataTransferObject class.

■ This class has a single attribute which is an array of Dictionary class.

■ Dictionary class has a single attribute which is an array of NameValuePairDTO

Using an array of name value pairs inside an array of dictionary allows for supporting
two dimensional grid structures in the UI layer.

At present whenever any third party requires support for additional attributes in a
Domain Object, the information regarding the corresponding Customized Domain
Object name and attribute name-value pair is required to be populated as an array of
NameValuePairDTO which in turn is set in the Dictionary class as the first and only
element of the ’dictionaryArray’ attribute of the DataTransferObject. This is shown in
the following code extract.

Customized Domain Object DTO Interceptor in UI Layer

Extensibility of Domain Objects - Dictionary Pattern 19-3

Figure 19–2 Code Extract

19.2 Customized Domain Object DTO Interceptor in UI Layer
All DTO classes should extend DomainObjectDTO in case maintenance fields are
required.

For example, ’MessageDataAttributeDTO’ Class which extends ’DomainObjectDTO’ is
used to transfer data between an external system and the application service and
persist data for Domain Object ’MessageDataAttribute’.

’CustomizedMessageDataAttribute’ is a subclass of this Customizable Maintenance
Domain Object called ’MessageDataAttribute’ which is extended by the partners or
consulting teams to include and subsequently persist extra attributes along with those
of ’MessageDataAttribute’.

This information can be mapped as input and output to the application services with
the help of dictionaryArray attribute of MessageDataAttributeDTO inherited from
DataTransferObject.

19.2.1 Interceptor Hook to Persist Customized Domain Object Attributes
This UI Layer Interceptor Hook is used during Create or Update mode to populate
DataTransferObject with the dictionaryArray attributes from customized Screen
Components to be persisted as the Customized Domain Object.

In the UI Layer, the ApplicationServiceProxyFacade is used to send the
DataTransferObject on to the Host to be persisted. Before it does so, it uses the
InterceptorFactory to instantiate the appropriate IProxyLayerInterceptor defined in the
DictionaryInterceptor.properties corresponding to the key for this application service
or task code. Thereafter it invokes the ’populateDictionaryArray’ method of this
IProxyLayerInterceptor to populate DataTransferObject with the dictionaryArray
attributes from customized Screen Components. Thereafter, it sends the entire
DataTransferObject on to the Host for persistence as the Customized Domain Object.

The following figure provides the details of Interceptor Hook to populate and persist
Customized Domain Object.

Customized Domain Object DTO Interceptor in UI Layer

19-4 Oracle Banking Platform Extensibility Guide

Figure 19–3 Interceptor Hook to Persist Customized Domain Object

19.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes
This UI Layer Interceptor Hook is used during read mode to extract the
dictionaryArray attributes from the DataTransferObject and populate the customized
Screen Components with the help of the screen view object.

In the UI Layer, the ApplicationServiceProxyFacade is used to receive the
DataTransferObject from the Host. After it does so, it uses the InterceptorFactory to
instantiate the appropriate IProxyLayerInterceptor defined in the
DictionaryInterceptor.properties corresponding to the key for this application service
or task code. Thereafter, it invokes the ’extractDictionaryArray’ method of this
IProxyLayerInterceptor to extract the dictionaryArray attributes from the
DataTransferObject and populate the customized Screen Components with the help of
the screen view object. Thereafter, it returns the entire DataTransferObject on to the
Screen Backing Bean or Helper Class from where the proxy fetch call was invoked.

The following figure provides the details of Interceptor Hook to fetch Customized
Domain Object and populate extra Screen Components.

Dictionary Data Transfer from UI to Host

Extensibility of Domain Objects - Dictionary Pattern 19-5

Figure 19–4 Interceptor Hook to Fetch Customized Domain Object

InterceptorFactory instantiates the appropriate IProxyLayerInterceptor defined in the
DictionaryInterceptor.properties corresponding to the key.

Examples of such key value pair is:-

com.ofss.fc.appx.ep.service.dispatch.message.service.client.proxy.MessageTemplateAp
plicationServiceProxyFacade=com.ofss.fc.ui.taskflows.ep.messageTemplateUI.view.int
erceptor.MessageTemplateUIInterceptor

com.ofss.fc.appx.party.service.contact.service.client.proxy.ContactPointApplicationSer
viceProxyFacade=com.ofss.fc.ui.view.party.contactPoint.interceptor.ContactPointUIInt
erceptor

19.3 Dictionary Data Transfer from UI to Host
The section describes the dictionary data transfer from UI to Host.

19.3.1 Customized Domain Object DTO Transfer from UI to Host
In UI server <ApplicationService>JSONClient constructs the JSON Object for
<DomainObjectDTO> which includes the dictionaryArray of the DataTransferObject.

For example, in UI server MessageTemplateApplicationServiceJSONClient constructs
the JSON Object for MessageTemplateDTO which includes
MessageTemplateAttributeDTO and the dictionaryArray of DataTransferObject as
shown below.

Dictionary Data Transfer from UI to Host

19-6 Oracle Banking Platform Extensibility Guide

Figure 19–5 JSONClient constructs the JSON Object

<ApplicationService>JSONClient constructs the JSON Object for
<DomainObjectDTO> which includes the dictionaryArray of the
DataTransferObject

The above process uses AbstractJSONBindingStub class' serializeDictionaryArray to
include ’genericName’ and ’value’ attributes of NameValuePairDTOArray which was
inside dictionaryArray attribute of MessageTemplateAttributeDTO.

Dictionary Data Transfer from UI to Host

Extensibility of Domain Objects - Dictionary Pattern 19-7

Figure 19–6 SerializeDictionaryArray to include GenericName and Value attributes

AbstractJSONBindingStub class's serializeDictionaryArray to include
"genericName" and "value" attributes of NameValuePairDTOArray

In the Host Server <ApplicationService>JSONFacade extracts the ’DictionaryArray’
attribute of JSON Object and sets it as <DomainObjectDTO>'s dictionaryArray
attribute.

For example, in the Host Server, MessageTemplateApplicationServiceJSONFacade
extracts the ’DictionaryArray’ attribute of JSON Object and sets it as
MessageDataAttributeDTO's dictionaryArray attribute.

Dictionary Data Transfer from UI to Host

19-8 Oracle Banking Platform Extensibility Guide

Figure 19–7 Host Server JSONFacade extracts the attribute of JSON Object

In the Host Server <ApplicationService>JSONFacade extracts the "DictionaryArray"
attribute of JSON Object and sets it as <DomainObjectDTO>'s dictionaryArray
attribute

The above process uses AbstractJSONFacade's getDictionaryArray method that
unmarshalls the ’genericName’ and ’value’ from JSON Object to get the
dictionaryArray attribute.

Dictionary Data Transfer from UI to Host

Extensibility of Domain Objects - Dictionary Pattern 19-9

Figure 19–8 AbstractJSONFacade's getDictionaryArray method

AbstractJSONFacade's getDictionaryArray method that unmarshalls the
"genericName" and "value" from JSON Object to get the dictionaryArray attribute

19.3.2 Customized Domain Object DTO transfer from Host to UI
In the Host Server <ApplicationService>JSONFacade constructs the JSON Object for
<DomainObjectDTO> and the dictionaryArray of DataTransferObject

MessageTemplateApplicationServiceJSONFacade's method
serializeMessageDataAttributeDTOArray in Host Server constructs the JSON Object
for MessageTemplateDTO which includes MessageTemplateAttributeDTO and the
dictionaryArray of DataTransferObject as shown below:

Dictionary Data Transfer from UI to Host

19-10 Oracle Banking Platform Extensibility Guide

Figure 19–9 Host Server JSONFacade constructs the JSON Object

In the Host Server <ApplicationService>JSONFacade constructs the JSON Object
for <DomainObjectDTO> and the dictionaryArray of DataTransferObject

The above process uses AbstractJSONFacade's serializeDictionaryArray to include
’genericName’ and ’value’ attributes of NameValuePairDTOArray which was inside
dictionaryArray attribute of MessageTemplateAttributeDTO.

Dictionary Data Transfer from UI to Host

Extensibility of Domain Objects - Dictionary Pattern 19-11

Figure 19–10 AbstractJSONFacade's serializeDictionaryArray to include Generic Name and Value
attributes

AbstractJSONFacade's serializeDictionaryArray to include "genericName" and
"value" attributes of NameValuePairDTOArray

In the UI Server, <ApplicationService>JSONClient extracts the ’DictionaryArray’
attribute of JSON Object and sets it as <DomainObjectDTO>DTO's dictionaryArray
attribute.

In the UI Server, MessageTemplateApplicationServiceJSONClient extracts the
’DictionaryArray’ attribute of JSON Object and sets it as MessageDataAttributeDTO's
dictionaryArray attribute.

Dictionary Data Transfer from UI to Host

19-12 Oracle Banking Platform Extensibility Guide

Figure 19–11 UI Server JSONClient extracts the DictionaryArray attribute

In the UI Server, <ApplicationService>JSONClient extracts the "DictionaryArray"
attribute of JSON Object and sets it as <DomainObjectDTO>DTO's
dictionaryArray attribute

The above process uses AbstractJSONBindingStub's getDictionaryArray method that
unmarshalls the ’genericName’ and ’value’ from JSON Object to get the
dictionaryArray attribute.

Translating Dictionary Data into Custom Domain Object

Extensibility of Domain Objects - Dictionary Pattern 19-13

Figure 19–12 AbstractJSONBindingStub's getDictionaryArray method

AbstractJSONBindingStub's getDictionaryArray method that unmarshalls the
"genericName" and "value" from JSON Object

The provision of marshalling and un-marshalling of ’dictionaryArray’ attribute of all
DataTransferObjects has been included in the JSON layer for all application services.

19.4 Translating Dictionary Data into Custom Domain Object
This section describes the details of translating dictionary data into custom domain
object.

19.4.1 Instantiation and Persistence of Custom Domain Objects
If a method has an input parameter that is a DataTransferObject, the first line of the
method in the assembler will be of the form:

(populateDataTransferObjectDTOMap(’Fully Qualified Name of this
DataTransferObject>’, dataTransferObject);

This method is defined in AbstractAssembler.java which newly instantiates
referenceDataTransferObjectDTOMap if required and populates the map with the
above entry.

This map is used as a set of globally available DataTransferObject's which can be
retrieved by invoking another method defined in AbstractAssembler.java which is of
the form:

retrieveDataTransferObjectDTOMapElement(’<Fully Qualified Name of this
DataTransferObject >’);

Translating Dictionary Data into Custom Domain Object

19-14 Oracle Banking Platform Extensibility Guide

Whenever any AbstractDomainObject is instantiated, the Customized
AbstractDomainObject should be instantiated instead of the original
AbstractDomainObject wherever applicable.

The AbstractDomainObject is instantiated with the help of the below code fragment:

IAbstractDomainObject domainObject=null;
 try {
 if (retrieveDataTransferObjectDTOMapElement("
<Fully Qualified Name of DataTransferObject from Naming Convention Rules
>").getDictionaryArray() == null) {
 domainObject = <Current Process Of Instantiation>;
 } else {
 domainObject=(IAbstractDomainObject)
 getCustomizedDomainObject (
retrieveDataTransferObjectDTOMapElement (
 "<Fully Qualified Name of
DataTransferObject from Naming Convention Rules >"));

/********* In AbstractAssembler.java, we have defined the method
public IAbstractDomainObject getCustomizedDomainObject(DataTransferObject
dataTransferObjectDTO)

This method instantiates the Customized AbstractDomainObject based on the value of
the attribute "dictionaryArray" of the DataTransferObject passed as the only
parameter. The method also populates this customized domain object with the extra
attribute values also from the "dictionaryArray" attribute and finally returns
this instance of the Customized Domain Object.
*********/
 }
 } catch (Exception e) {
 domainObject = <Current Process Of Instantiation>;
 }

19.4.2 Fetching of Customized Domain Objects
If a method has an input parameter that is an IAbstractDomainObject, the first line of
the method in the assembler will be of the form:

populateAbstractDomainObjectMap("<Fully_Qualified_Name_
IAbstractDomainObject>", abstractDomainObject);

This method is defined in AbstractAssembler.java which newly instantiates
referenceAbstractDomainObjectMap if required and populates the map with the above
entry.

This map is used as a set of globally available IAbstractDomainObject's which can be
retrieved by invoking another method defined in AbstractAssembler.java which is of
the form:

retrieveDataTransferObjectDTOMapElement("<Fully_Qualified_Name_
IAbstractDomainObject>");

Whenever any DataTransferObject is instantiated, we populate its ’dictionaryArray’
attribute immediately after it's instantiation.

In AbstractAssembler.java, we have defined the method à

public Dictionary[] getDictionaryArray(IAbstractDomainObject obj)

This method creates and returns a dictionary array from the IAbstractDomainObject
passed to it as input parameter.

Customized Domain Object ORM Configuration

Extensibility of Domain Objects - Dictionary Pattern 19-15

 Example of final piece of code:

Figure 19–13 Instantiation of DataTransferObjects

19.5 Customized Domain Object ORM Configuration
This section describes the details of customized domain object ORM configuration.

19.5.1 Case 1 - Non-Inheritance based mapping
Non-inheritance based mapping refers to those domain objects that are not mapped as
a Hibernate Subclass or Union-Subclass or Joined-Subclass. Let us take the example of
the class MessageDataAttribute. The fully qualified class name is
’com.ofss.fc.domain.ep.entity.dispatch.message.MessageDataAttribute’. This class has
been mapped in ep.messagetemplate.hbm.xml.

Adding Discriminator column mapping in existing HBM file
Add the discriminator as:- <discriminator column=" DOMAIN_OBJECT_EXTN"
type="string"/>

For the purpose of identifying the extended domain object in the corresponding table,
add a 'discriminator column' in the corresponding table and update the hibernate file.
The name of the discriminator column used is DOMAIN_OBJECT_EXTN and the
default discriminator value defined is 'CZ'

So any normal Create or Update operation will have a value 'CZ' for DOMAIN_
OBJECT_EXTN column.

Customized Domain Object ORM Configuration

19-16 Oracle Banking Platform Extensibility Guide

Figure 19–14 Adding Discriminator Column Mapping in Existing HBM file

A new HBM file mapping to Customized Domain Object is added
The following figure explains adding a new HBM file mapping to Customized
Domain Object.

Figure 19–15 HBM File Mapping to Customized Domain Object

For example a new file CustomizedMessageDataAttribute.hbm.xml is introduced to
include the extra attributes added by consulting or any other third party along with

Customized Domain Object ORM Configuration

Extensibility of Domain Objects - Dictionary Pattern 19-17

the discriminator value. This file will map to the new customized domain object and
will be extending the existing Abstract Domain Object.

Adding new Java File corresponding to the Customized Domain Object
The following figure explains adding new Java file corresponding to the Customized
Domain Object.

Figure 19–16 Adding New Java File to the Customized Domain Object

A Java File is added corresponding to the existing Abstract Domain Object. This will
be extending the Abstract Domain Object that we are extending.

Adding extra columns along with the discriminator column to the domain object
table
The following figure explains adding a new Java file corresponding to the Customized
Domain Object.

Customized Domain Object ORM Configuration

19-18 Oracle Banking Platform Extensibility Guide

Figure 19–17 Adding Extra Columns along with the Discriminator Column

The extra columns along with the discriminator column have to be added to the
domain object table of this domain object.

In case of Creation or Updation of ’CustomizedMessageDataAttribute’ instead of
’MessageDataAttribute’ the new discriminator column ’DOMAIN_OBJECT_EXTN’
has the value of ’FCMA’ instead of ’CZ’ and an additional value in columns
’CUSTOM_VALUE1’ and ’CUSTOM_VALUE2’ in table FLX_EP_MSG_ATTR_B.

In case of Creation or Updation of ’MessageDataAttribute’ the new discriminator
column ’DOMAIN_OBJECT_EXTN’ has the value of ’CZ’ and NULL values in
columns ’CUSTOM_VALUE1’ and ’CUSTOM_VALUE2’ in table FLX_EP_MSG_
ATTR_B.

19.5.2 Case 2 - Mapped as a Hibernate Subclass
The maintenance domain objects which are mapped as a Hibernate Subclass already
have an existing discriminator. For the purpose of identifying the extended domain
object in the same table, we shall be using the existing discriminator.

Let us take the example of ’com.ofss.fc.domain.party.entity.contact.Cellular’. This is
mapped as a subclass in ContactPoint.hbm.xml.

A new HBM file mapping to Customized Domain Object is added
The following figure explains adding a new HBM file mapping to Customized
Domain Object.

Customized Domain Object ORM Configuration

Extensibility of Domain Objects - Dictionary Pattern 19-19

Figure 19–18 Adding a New HBM File Mapping to Customized Domain Object

A new file FirstCustomizedCellular.hbm.xml is introduced to include the extra
attributes added by consulting or any other third party along with the discriminator
value ’FCLR’. This file will map to the new customized domain object
’com.ofss.fc.domain.party.entity.contact.FirstCustomizedCellular’ and will be
extending the existing Abstract Domain Object which is
’com.ofss.fc.domain.party.entity.contact.Cellular’.

Adding new Java File corresponding to the Customized Domain Object
The following figure explains adding a new Java File corresponding to the Customized
Domain Object.

Customized Domain Object ORM Configuration

19-20 Oracle Banking Platform Extensibility Guide

Figure 19–19 Adding New Java File to Customized Domain Object

A Java File ’com.ofss.fc.domain.party.entity.contact.FirstCustomizedCellular’ is added
corresponding to the existing Abstract Domain Object. This will be extending the
Abstract Domain Object that we are extending.

Adding Extra Columns to the Domain Object Table
The extra columns have to be added to the domain object table of this domain object.

In this case GRAPHICS_MODE column is added to FLX_PI_CONTACT_POINT table.

So in case of Creation or Updation of ’FirstCustomizedCellular’ instead of ’Cellular’
the existing discriminator column ’CONTACT_POINT_TYPE’ has the value of ’FCLR’
instead of ’CLR’ and an additional value in column ’GRAPHICS_MODE’ in table FLX_
PI_CONTACT_POINT.

And in case of Creation or Updation of ’Cellular’ the existing discriminator column
’CONTACT_POINT_TYPE’ has the value of ’CLR’ and NULL values in column
’GRAPHICS_MODE’ in table FLX_PI_CONTACT_POINT.

19.5.3 Case 3 - Mapped as a Hibernate Union-Subclass or Joined-Subclass
Let us take the example of
’com.ofss.fc.domain.lcm.entity.limits.facility.proposedFacility.ProposedFacility’. This
class has been mapped in Facility.hbm.xml as a union subclass.

Use the customized entity
’com.ofss.fc.cz.nab.domain.lcm.entity.limits.facility.proposedFacility.CustomizedPropo
sedFacility’ for the purpose of extensibility of this domain object.

Adding Discriminator in HBM file where base class has been mapped is not
required
The existing Facility.hbm.xml file which contains the mapping for
"com.ofss.fc.domain.lcm.entity.limits.facility.proposedFacility.ProposedFacility" is not
required to be altered.

Customized Domain Object ORM Configuration

Extensibility of Domain Objects - Dictionary Pattern 19-21

A new HBM file mapping to Customized Domain Object is added
The following figure explains adding a new HBM file mapped to new Customized
Domain Object.

Figure 19–20 New HBM File Mapping

For example, a new file CustomizedProposedFacility.hbm.xml is introduced to include
the extra attributes added by consulting or any other third party. This file will map to
the new customized domain object and will be extending the existing Abstract Domain
Object.

Customized Domain Object ORM Configuration

19-22 Oracle Banking Platform Extensibility Guide

Adding new Java File corresponding to the Customized Domain Object

Figure 19–21 Adding New Java File

A Java File ’CustomizedProposedFacility.java’ is added. This extends the Abstract
Domain Object that we are extending.

Create a new table CZ_NAB_LM_PROPOSED_FACILITY similar to the Domain
Object Table
We are extending that is,FLX_LM_PROPOSED_FACILITY_B and add the extra
columns to the new table.

Figure 19–22 Create a New Table CZ_NAB_LM_PROPOSED_FACILITY

Extensibility using Dictionary in Origination Application

Extensibility of Domain Objects - Dictionary Pattern 19-23

Adding Customized HQL Queries whenever the Domain Object is Referred
The following file has the attribute ’CustomizedHibernateQueriesConfig’ to fire the
Customized HQL if required: Preferences.xml.

The attribute is as follows:

<Preference name="CustomizedHibernateQueriesConfig"

PreferencesProvider="com.ofss.fc.infra.config.impl.JavaConstantsConfigProvider"
 overriddenBy="CustomizedHibernateQueriesConfigOverride"
 parent="jdbcpreference"

propertyFileName="com.ofss.fc.common.CustomizedHibernateQueriesConfig"
 syncTimeInterval="600000" />

The following files have also been changed to fire the Customized HQL if required.

com.ofss.fc.framework.domain@/com/ofss/fc/framework/repository/AbstractRepos
itory.java

com.ofss.fc.common.jar@/src/com/ofss/fc/common/CustomizedHibernateQueriesC
onfig.java

The following file has the attribute ’CustomizedHibernateQueriesConfigOverride’ to
fire the Customized HQL if required.

<lzn>/au/config/Preferences.xml

<Preference name="CustomizedHibernateQueriesConfigOverride"

PreferencesProvider="com.ofss.fc.infra.config.impl.JavaConstantsConfigProvider"
 parent=""
propertyFileName="com.ofss.fc.lz.au.common.CustomizedHibernateQueriesConfig"
 syncTimeInterval="600000"/>

Therefore, com.ofss.fc.lz.au.common.CustomizedHibernateQueriesConfig.java file
needs to have the old HQL query name mapped to the customized HQL query name
for this domain object.

Similarly, extensibility of domain objects mapped as joined-subclass can also be done.

19.5.4 Case 4 - Mapped as a Hibernate Component
This relates to only those component classes that implements IAbstractDomainObject
and should be extensible.

The Java Class corresponding to this component class has to be extended and this new
Java Class along with the additional attributes have to be mapped in the hibernate file.

The corresponding additional columns have to be added in the domain object table in
question.

19.6 Extensibility using Dictionary in Origination Application
In this section, the Application Form screen (Fast path: OR097) of the Oracle Banking
Platform is taken as an example.

19.6.1 ICustomDataHandler's as DictionaryArray Interceptor
The backing bean method of OR097 - Application Form
’com.ofss.fc.ui.taskflows.origination.application.applicationForm.view.backing.Applic

Extensibility using Dictionary in Origination Application

19-24 Oracle Banking Platform Extensibility Guide

ationForm.moveNext()’ calls implementation of
com.ofss.fc.ui.taskflows.origination.application.common.handler.ICustomDataHandle
r.

Implementation of
com.ofss.fc.ui.taskflows.origination.application.common.handler.ICustomDataHandle
r can be configured in OriginationConfiguration.properties. Property name is
customDataHandler

ApplicationFormHelper.getSubmissionInputDTO() will give the master DTO for the
application form.

Figure 19–23 CustomDataHandler's as DictionaryArray Interceptor

This hook should be used to populate the dictionary array of the concerned DTO at the
correct stage of application form entry.

19.6.2 Create Customized Abstract Domain Object Class
A new Java File is added corresponding to the existing Abstract Domain Object. This
extends the Abstract Domain Object that we are extending.

Extensibility using Dictionary in Origination Application

Extensibility of Domain Objects - Dictionary Pattern 19-25

Figure 19–24 Create Customized Abstract Domain Object Class

19.6.3 Create Customized Abstract Domain Object Hibernate Mapping File
A new file hbm.xml is introduced to include the extra attributes added by consulting
or any other third party along with the discriminator value. This file maps to the new
customized domain object and extends the existing Abstract Domain Object.

Figure 19–25 Create Customized Abstract Domain Object Hibernate Mapping File

Extensibility using Attributes of Various Supported Datatypes

19-26 Oracle Banking Platform Extensibility Guide

19.6.4 Create Customized Abstract Domain Object Attribute Columns
The extra columns have to be added to the domain object table of this domain object.

Figure 19–26 Create Customized Abstract Domain Object Attribute Columns

In case of Creation or Updation of ’CustomizedApplicant’ instead of ’Applicant’ the
existing discriminator column ’DOMAIN_OBJECT_EXTN’ has the value of ’CUST’
instead of ’CZ’ and an additional value in column ’CRIMINAL_RECORD’ in table
FLX_OR_APPLICANTS.

In case of Creation or Updation of ’Applicant’ the existing discriminator column
’DOMAIN_OBJECT_EXTN’ has the value of ’CZ’ and NULL values in column
’CRIMINAL_RECORD’ in table FLX_OR_APPLICANTS.

Similarly, other DomainObjectDTO's can have their dictionary arrays populated in the
ICustomDataHandler class being used and the corresponding customized domain
object will get persisted instead of the usual domain object.

19.7 Extensibility using Attributes of Various Supported Datatypes
Extensibility of maintenance domain objects now supports extended attributes with all
data types that have a public constructor with a single argument of data-type "String".

This includes attributes of data-type"com.ofss.fc.datatype.Date" whose "toString()"
method should be invoked to set its value in NameValuePairDTO array element of
Dictionary array. The value set is of the format given in root.properties file.

Additionally extensibility of maintenance domain objects is now also supporting
extended attributes with enumeration data types defined in "com.ofss.fc.enumeration"
project.

Here is an example of extensibility of
"com.ofss.fc.domain.ep.entity.dispatch.message.MessageTemplate" using attributes of
different supported datatypes.

The following customized class is created that contains the additional attributes.

Extensibility using Attributes of Various Supported Datatypes

Extensibility of Domain Objects - Dictionary Pattern 19-27

Figure 19–27 Customized Message Template Class

 The following extra columns have been added in the domain object table "flx_ep_
msg_tmpl_b".

Extensibility using Attributes of Various Supported Datatypes

19-28 Oracle Banking Platform Extensibility Guide

Figure 19–28 Domain Object Table

The following hibernate file maps the customized class attributes with the table
columns.

Figure 19–29 Hibernate File

The following JUnit test case has been used to test a "create" operation.

Extensibility using Attributes of Various Supported Datatypes

Extensibility of Domain Objects - Dictionary Pattern 19-29

Figure 19–30 JUnit Test Case

The above JUnit runs to add the following record in the table.

Figure 19–31 JUnit Adds Table Record

Similarly, a JUnit is run to do "fetch" operation. This fetches the customized record
whose dictionary array values have been shown below.

Extensibility using Attributes of Various Supported Datatypes

19-30 Oracle Banking Platform Extensibility Guide

Figure 19–32 Dictionary Array Values

20

Deployment Guideline 20-1

20Deployment Guideline

This chapter explains the deployment guidelines.

20.1 Customized Project Jars
The customized extension projects are to be bundled in the different extensibility jars
which are required to be added in the extensibility.

20.2 Database Objects
User has to update the corresponding seed data for the implementation of different
extensibility features.

20.3 Extensibility Deployment
The new customized extensibility jars will be added in the extensibility libraries as
ext.obp.host.domain for the host middleware layer, ext.obp.ui.domain for UI or
presentation layer and ext.obp.soa.domain for the SOA layer. These extensibility
application libraries will be packaged and shipped as the separate library folders along
with the original library folders so that the extensibility feature can be added.

The OBP deployed applications shall reference these libraries so that customization
jars included into these get automatically referenced in the corresponding EAR and
WAR files.

Extensibility Deployment

20-2 Oracle Banking Platform Extensibility Guide

Figure 20–1 Extensibility Deployment

21

Extensibility Usage – OBP Localization Pack 21-1

21Extensibility Usage – OBP Localization Pack

OBP shall be releasing localization pack which ensures an optimized implementation
period by adapting the product to different regions by implementing common region
specific features pre-built and shipped. Every bank in different regions have different
tax laws, different financial policies and so on. The policies in US will be different from
those in Australia.

The localization packs leverage OBP extensibility to incorporate regional features and
requirements by implementing different extension hooks for host and / or different
JDeveloper customization functionalities for UI layer. This section presents a use case
from OBP localization pack as implemented using the extensibility guidelines as a
sample which can be referred to and followed as a guideline. Customization
developers can implement bank's specific requirements on similar lines.

For example, in LCM022 'Perfection Capture' screen, the details section is shown with
the additional fields which are defined for a particular location.

Localization Implementation Architectural Change

21-2 Oracle Banking Platform Extensibility Guide

Figure 21–1 Perfection Capture Screen

21.1 Localization Implementation Architectural Change
Architecturally, the following points are considered:

■ Localization package will be over and above the product

■ Customization packages will be over the Localization and the Product.

■ Any changes done for Localization should ensure that future product changes as
well as customization changes will work seamlessly without any impact.

The additional fields which get identified and developed as part of localization
requirements are in its own project, package, configuration, constant files and tables.

For example, the typical flow of the above mentioned perfection attributes added as
part of localization requirement is shown below:

Localization Implementation Architectural Change

Extensibility Usage – OBP Localization Pack 21-3

Figure 21–2 Localization Implementation Architectural Change

The Package structure for the implementation is shown below:

Figure 21–3 Package Structure

Customizing UI Layer

21-4 Oracle Banking Platform Extensibility Guide

21.2 Customizing UI Layer
This section explains the customization of UI layer.

21.2.1 JDeveloper and Project Customization
For the customization of the UI layer, JDeveloper needs to be configured in the
customizable mode as explained in the ADF Screen Customization Sections.

The example for the customization of the JDeveloper is described below:

Figure 21–4 Customization of the JDeveloper

Customizing UI Layer

Extensibility Usage – OBP Localization Pack 21-5

Figure 21–5 Customization Context in Customization Developer Role

adf-config.xml
If the changes are not reflecting, adf-config.xml needs to be opened from the
application resources and Configure Design Time Customization layer values highlighted
in the below image needs to be clicked. It will create a CustomizationLayerValues.xml
inside MDS DT folder in application resources. All the content from <JDEVELOPER_
HOME>/jdeveloper/jdev/CustomizationLayerValues.xml needs to be copied to this
CustomizationLayerValues.xml. This is to ensure that the changes are reflected at the
application level.

Customizing UI Layer

21-6 Oracle Banking Platform Extensibility Guide

Figure 21–6 Configure Design Time Customization layer

Figure 21–7 Enabling Seeded Customization

Customizing UI Layer

Extensibility Usage – OBP Localization Pack 21-7

Libraries and Classpath
In the "Libraries and Classpath" section, the previously deployed
com.ofss.fc.lz.au.ui.OptionCC.jar containing the customization class then needs to be
added.

Figure 21–8 Library and Class Path

adf-config.xml
In the Application Resources tab, the adf-config.xml present in the Descriptors/ADF
META-INF folder needs to be opened. In the list of Customization Classes, all the entries
should not be removed and the com.ofss.fc.lz.au.ui.OptionCC.OptionCC class to this list
needs to be added.

Customizing UI Layer

21-8 Oracle Banking Platform Extensibility Guide

Figure 21–9 MDS Configuration

Jdeveloper is then restarted and the entry needs to be checked for
com.ofss.fc.lz.au.ui.OptionCC. If the jar entry is not reflecting, then source needs to be
clicked and the entry as highlighted and shown in the below image needs to be
manually added.

Figure 21–10 Manually Add entries

Customizing UI Layer

Extensibility Usage – OBP Localization Pack 21-9

21.2.2 Generic Project Creation
After creating the Customization Layer, Customization Class and enabling the
application for Seeded Customizations, the next step is to create a project which will
hold the customizations for the application. Generic project is then created with the
following technologies:

■ ADF Business Components

■ Java

■ JSF

■ JSP and Servlets

Following jars must then be added to the Project Properties and in the classpath:

■ Customization class JAR (com.ofss.fc.lz.au.ui.OptionCC.jar)

■ The project JAR which contains the screen / component to be customized. For
example, if you want to customize the Collateral Perfection Capture screen, the
related project JAR is com.ofss.fc.ui.view.lcm.jar.

■ All the dependent JARS / libraries for the project needs to added.

■ Finally newly created project (example: ’com.ofss.fc.lz.au.view.lcm’) needs to be
enabled for Seeded Customizations.

21.2.3 MAR Creation
After implementing customizations on objects from an ADF library, the customization
metadata is stored by default in a subdirectory of the project called
libraryCustomizations. Although ADF library customizations at the project level is
created and merged together during packaging to be available at the application level
at runtime. Essentially, ADF libraries are JARs that are added at the project level,
which map to library customizations being created at the project level. However,
although projects map to web applications at runtime, the MAR (which contains the
library customizations) is at the EAR level, so the library customizations are seen from
all web applications.

Therefore, an ADF library artifact are customized in only one place in an application
for a given customization context (customization layer and layer value). Customizing
the same library content in different projects for the same customization context would
result in duplication in MAR packaging. To avoid duplicates that would cause
packaging to fail, customizations are implemented for a given library in only one
project in your application.

Step 1
Select the Application Properties.

Customizing UI Layer

21-10 Oracle Banking Platform Extensibility Guide

Figure 21–11 MAR Creation

Step 2
Import com.ofss.fc.lz.au.ui.view.lcm project into application. Click Application Menu
and select Application Properties.

Customizing UI Layer

Extensibility Usage – OBP Localization Pack 21-11

Figure 21–12 MAR Creation - Application Properties

Step 3
Select Deployment and click New.

Customizing UI Layer

21-12 Oracle Banking Platform Extensibility Guide

Figure 21–13 MAR Creation - Create Deployment Profile

Step 4
Select the MAR File option.

Customizing UI Layer

Extensibility Usage – OBP Localization Pack 21-13

Figure 21–14 MAR Creation - MAR File Selection

Step 5
Select MAR from Archive Type and give a name ending with MAR and click Ok.

Customizing UI Layer

21-14 Oracle Banking Platform Extensibility Guide

Figure 21–15 MAR Creation - Enter Details

Step 6
Select the ADF Library Customization for com.ofss.fc.lz.au.ui.view.lcm.

Customizing UI Layer

Extensibility Usage – OBP Localization Pack 21-15

Figure 21–16 MAR Creation - ADF Library Customization

Step 7
Select the project for which Library Customization will be included in MAR
(com.ofss.fc.lz.au.ui.view.lcm) and click OK.

Step 8
Select View (EAR File) and click Edit.

Customizing UI Layer

21-16 Oracle Banking Platform Extensibility Guide

Figure 21–17 MAR Creation - Edit File

Step 9
Select Application Assembly and check the created MAR (lznMAR) and click ok on
defaults.

Source Maintenance and Build

Extensibility Usage – OBP Localization Pack 21-17

Figure 21–18 MAR Creation - Application Assembly

21.3 Source Maintenance and Build
This section describes the source maintenance and build details.

21.3.1 Source Check-ins to SVN
Along with UI and middleware source maintenance, there is a set of metadata files
required to be packaged in the deployable packages in order for customization. When
performing any changes to a product screen in "customization mode" the
corresponding <screen filename>.xml gets generated. In case of taskflows, the
metadata file is <page definition filename>.xml. The path structure is provided in the
below table.

Table 21–1 Path Structure

For page definition

File name (with path) adfmsrc/com/ofss/fc/ui/view/lcm/collaterals/collateralPerfectionCapture/pageD
efn/CollateralPerfectionCapturePageDef.xml

Meta-data file name (with
path)

com\ofss\fc\ui\view\lcm\collaterals\collateralPerfectionCapture\pageDefn\mdss
ys\cust\option\LZ\CollateralPerfectionCapturePageDef.xml.xml

For Screens

File name (with path) com/ofss/fc/ui/view/lcm/collaterals/collateralPerfectionCapture/form/Collateral
PerfectionCapture.jsff

Meta-data file name (with
path)

com\ofss\fc\ui\view\lcm\collaterals\collateralPerfectionCapture\form\mdssys\c
ust\option\LZ\CollateralPerfectionCapture.jsff.xml

Packaging and Deployment of Localization Pack

21-18 Oracle Banking Platform Extensibility Guide

These meta-data sources are checked into the METADATA folder in the product SVN
under the localization path. During deployment, the EAR implementing these
customizations must include these above mentioned sources in a .mar file.

21.3.2 .mar files Generated during Build
The localization specific build will include a last step, which is creation of .mar
(metadata archive) file from the files checked-in the METADATA folder. This step will
create separate .mar files, based on the modules which these represent. These MAR
files are then packaged inside the deployable application EAR
(com.ofss.fc.ui.view.ear).

Typical mar files generated during build will follow the naming convention
com.ofss.fc.lz.au.ui.view.<module>.mar. Example, com.ofss.fc.lz.au.ui.view.pc.mar

21.3.3 adf-config.xml
adf-config.xml stores design time configuration information. The cust-config section
(under mds-config) in the file contains a reference to the customization class. As part
of the build activity, this file needs to be placed in the path
com.ofss.fc.ui.view.ear@/adf/META-INF/. Also the customization class should be
available in the classpath during deployment.

21.4 Packaging and Deployment of Localization Pack
In the OBP application, different projects will be shipped in the form of library jars
which can be customized and the new localization-specific application libraries can be
created. In the application, the assembly has been specifically modularized to take care
of multiple localizations by prevention of mix-up of jars. The naming convention for
the jars can be defined for different clients differently.

The new customized jars for hosts and UI needs to be packed with the original jars in
the EAR files which will be deployed on the server. Let's say, we are creating the
extension hooks of 'obp.host.app.domain' jar, then the separate jars can be defined as
'lz.au.obp.host.app.domain' and 'lz.us.obp.host.app.domain' for Australia and US
respectively.

The similar structure can also be maintained for the other applications across UI and
SOA channels. 'lz.au.obp.ui.domain' can be defined for the customized jar of the
project 'obp.ui.domain'.

The new customized jars for hosts and UI are packed below with the original jars in
the EAR files which will be deployed on the servers.

Packaging and Deployment of Localization Pack

Extensibility Usage – OBP Localization Pack 21-19

Figure 21–19 Package Deployment

Packaging and Deployment of Localization Pack

21-20 Oracle Banking Platform Extensibility Guide

22

OCH Integration 22-1

22OCH Integration

This chapter describes how additional information can be added to an Oracle
Customer Hub (henceforth mentioned as OCH) publish request. Publishing additional
information can be required base on the client requirements, and hence OBP
Integration adapters and assemblers need to be extended for such additional
informations. Integration adapters are used for gathering data related to a customer,
which is further used by assemblers to map OBP DTO to AIA Enterprise Business
Objects (henceforth mentioned as EBOs).

OBP OCH integration involves the following steps:

1. Fetching all the data related to customer depending on the use case

2. Conversion of OBP DTO to AIA EBOs

3. Posting the EBO to AIA queue using Asynch JMS protocol

Integration adapters are invoked from the post hook of application service extensions.
After the successful execution of the use case, adapters further call Integration
assemblers for conversion of DTO to EBO.

After conversion, adapters post the serialized EBO request to AIA queue using
Integration strategy, which is fetched on the basis of use case.

A few examples of Integration strategies are as follows:

■ AsyncFireForgetIntegrationStrategyJMS: It is used in use cases where a response
is not expected from OCH. Integration use cases involving creation/updation of
customer information use this strategy.

■ SyncIntegrationStrategy: It is used where a response is required from OCH. Uses
cases, like Party Search or Party Deduplication where customer information is
fetched from OCH, use this strategy.

A few examples of Integration adapters are:

■ UpdatepartyAdapter: It is used for populating customer information.

■ ChangeAccountTitleAdapter: It is used in use cases where customer's account
information is to be published to OCH.

A few examples of Integration assemblers are:

■ UpdatePartyAssembler: It is invoked from UpdatepartyAdapter and maps
customer information to EBO attributes.

■ CreateAccountAssember: It is invoked from ChangeAccountTitleAdapter and
maps customer's account information to respective EBO attribute.

Integration Adapter Interface

22-2 Oracle Banking Platform Extensibility Guide

22.1 Integration Adapter Interface
OBP framework contains an interface, IIntegrationAdapter which provides two basic
methods for OCH integration.

These two methods must be implemented by any adapter implementing the interface
and use them for publishing data to OCH. Signature of these two methods are:

void update(SessionContext context, DomainObjectDTO dto, BaseResponse response)
throws FatalException;
Object updateWithResponse(SessionContext context, DomainObjectDTO dto,
BaseResponse response) throws FatalException;
Update() method is used in the use cases where response it not expected from OCH.

UpdateWithResponse() method is used when the data is required from OCH.

Figure 22–1 Integration Adapter Interface

22.2 Abstract Integration Adapter Class
OBP framework has an abstract class AbstractIntegrationAdapter which provides
methods for common data, such as audit information or session context etc. This
abstract class implements IIntegrationAdapter interface.

All adapters must extend AbstractIntegrationAdapter and implement the two
methods defined in the IIntegrationAdapter interface.

Sample Integration Adapter

OCH Integration 22-3

Figure 22–2 Abstract Integration Adapter Class

22.3 Sample Integration Adapter
The following figure is a sample adapter for customer information:

Integration Abstract Assembler

22-4 Oracle Banking Platform Extensibility Guide

Figure 22–3 Sample Integration Adapter

22.4 Integration Abstract Assembler
OBP framework has as abstract class AbstractAssembler which provides design for
DTO to EBO conversion. These methods are used while mapping DTO to EBO and
vice versa.

Signature of methods are:

public abstract T toCanonicalModel(D dto) throws FatalException;
public abstract D fromCanonicalModel(T domainObject) throws FatalException;
toCanonicalModel() is used when DTO is to be converted to EBO and
fromCanonicalModel() in the other case.

Sample Assembler

OCH Integration 22-5

Figure 22–4 Integration Abstract Assembler

All the assemblers must implement these two methods for conversion of DTO to EBO
and vice versa.

Assemblers also populate the header of the request which is posted to the queue.

22.5 Sample Assembler
A sample assembler which extends AbstractAssembler should be like:

Sample Assembler

22-6 Oracle Banking Platform Extensibility Guide

Figure 22–5 Sample Assembler

User can extend assemblers to add more DTO to EBO mapping.

Note: EBOs are generated from AIA wsdl, and can be extended to
add extra fields in the custom tag using the standard AIA extension
framework. For each newly added field, customization developer
must set that field in the assembler.

A

Appendix A-1

AAppendix

The detailed list of adapters which can be used for extending and customizing the
product is present in the Oracle Banking Platform Extensibility Guide - Adapter Usage
Details.

A-2 Oracle Banking Platform Extensibility Guide

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Objective and Scope
	1.1 Overview
	1.2 Objective and Scope
	1.2.1 Extensibility Objective
	1.2.2 Document Scope

	1.3 Complementary Documentation
	1.4 Out of Scope

	2 Overview of Use Cases
	2.1 Extensibility Use Cases
	2.1.1 Extending Service Execution
	2.1.2 OBP Application Adapters
	2.1.3 User Defined Fields
	2.1.4 ADF Screen Customization
	2.1.5 SOA Customization
	2.1.6 Batch Framework Extension
	2.1.7 Uploaded File Processing
	2.1.8 Alert Extension
	2.1.9 New Reports Creation
	2.1.10 Security Customization
	2.1.11 Loan Schedule Computation Algorithm
	2.1.12 Print Receipt Functionality
	2.1.13 Facts and Business Rules
	2.1.14 Composite Application Service
	2.1.15 ID Generation
	2.1.16 OCH Integration

	3 Extending Service Executions
	3.1 Service Extension - Extending the “app” Layer
	3.1.1 Application Service Extension Interface
	3.1.2 Default Application Service Extension
	3.1.3 Application Service Extension Executor
	3.1.4 Extension Configuration

	3.2 Extended Application Service Extension - Extending the “appx” Layer
	3.2.1 Extended Application Service Extension Interface
	3.2.2 Default Implementation of Appx Extension
	3.2.3 Configuration
	3.2.4 Extended Application Service Extension Executor

	3.3 End-to-End Example of an Extension

	4 OBP Proxy Extension
	5 OBP Application Adapters
	5.1 Adapter Implementation Architecture
	5.1.1 Package Diagram
	5.1.2 Adapter Mechanism Class Diagram
	5.1.3 Adapter Mechanism Sequence Diagram

	5.2 Examples of Adapter Implementation
	5.2.1 Example 1 - EventProcessingAdapter
	5.2.2 Example 2 - DispatchAdapter

	5.3 Customizing Existing Adapters
	5.3.1 Custom Adapter Example 1 - DispatchAdapter
	5.3.2 Custom Adapter Example 2 - PartyKYCCheckAdapter

	6 User Defined Fields
	6.1 Enabling UDF for a Particular Screen
	6.1.1 UDF Metadata
	6.1.2 Seed Data for the Task Codes
	6.1.3 Screen Changes for Incorporating UDF
	6.1.4 Linking of UDF to a Screen (Taskflow Code)

	6.2 Control Flow for UDF
	6.2.1 Initial Screen Load
	6.2.2 Extracting UDF Values on Submission
	6.2.3 Handling the Fetch of UDF Values
	6.2.4 UDF Enabling Special Cases
	6.2.5 Tips for Trouble Shooting

	6.3 Limitations and Special Cases

	7 ADF Screen Customizations
	7.1 Seeded Customization Concepts
	7.2 Customization Layer
	7.3 Customization Class
	7.4 Enabling Application for Seeded Customization
	7.5 Customization Project
	7.6 Customization Role and Context
	7.7 Customization Examples
	7.7.1 Adding a Validator to Input Text Component
	7.7.2 Adding a UI Table Component to the Screen
	7.7.3 Adding a Date Component to a Screen
	7.7.4 Removing existing UI components from a screen

	8 SOA Customizations
	8.1 Customization Layer
	8.2 Customization Class
	8.3 Enabling Application for Seeded Customization
	8.4 SOA Customization Example Use Cases
	8.4.1 Add a Partner Link to an Existing Process
	8.4.2 Add a Human Task to an Existing Process

	9 Batch Framework Extensions
	9.1 Typical Business Day in OBP
	9.2 Overview of Categories
	9.2.1 Beginning of Day (BOD)
	9.2.2 Cut-off
	9.2.3 End of Day (EOD)
	9.2.4 Internal EOD
	9.2.5 Statement Generation
	9.2.6 Customer Communication

	9.3 Batch Framework Architecture
	9.3.1 Static View
	9.3.2 Dynamic View

	9.4 Batch Framework Components
	9.4.1 Category Components
	9.4.2 Shell Components
	9.4.3 Stream Components
	9.4.4 Database Components

	9.5 Batch Configuration
	9.5.1 Creation of New Category
	9.5.2 Creation of Bean Based Shell
	9.5.3 Creation of Procedure Based Shell
	9.5.4 Population of Other Parameters

	9.6 Batch Execution

	10 Uploaded File Data Processing
	10.1 Configuration
	10.1.1 Database Tables and Setup
	10.1.2 File Handlers
	10.1.3 Record Handlers for Both Header and Details
	10.1.4 DTO and Keys Classes for Both Header and Details
	10.1.5 XFF File Definition XML

	10.2 Processing
	10.2.1 API Calls in the Handlers
	10.2.2 Processing Adapter

	10.3 Outcome
	10.4 Failure/Exception Handling

	11 Alerts Extension
	11.1 Transaction as an Activity
	11.1.1 Activity Record
	11.1.2 Attaching Events to Activity
	11.1.3 Event Record
	11.1.4 Activity Event Mapping Record
	11.1.5 Activity Log DTO
	11.1.6 Alert Metadata Generation
	11.1.7 Alert Message Template Maintenance
	11.1.8 Alert Maintenance

	11.2 Alert Subscription
	11.2.1 Transaction API Changes

	11.3 Alert Processing Steps
	11.4 Alert Dispatch Mechanism
	11.5 Adding New Alerts
	11.5.1 New Alert Example
	11.5.2 Testing New Alert

	12 Creating New Reports
	12.1 Data Objects for the Report
	12.2 Catalog Folder
	12.3 Data Source
	12.4 Data Model
	12.5 XML View of Report
	12.6 Layout of the Report
	12.7 View Report in BIP
	12.8 OBP Batch Report Configuration - Define the Batch Reports
	12.9 OBP Batch Report Configuration - Define the Batch Report Shell
	12.10 OBP Batch Report Configuration - Define the Batch Report Shell Dependencies
	12.11 OBP Batch Report Configuration
	12.11.1 Batch Report Generation for a Branch Group Code
	12.11.2 Batch Report Generation Status
	12.11.3 Batch Report Generation Path

	12.12 OBP Adhoc Report Configuration
	12.12.1 Define the Adhoc Reports
	12.12.2 Define the Adhoc Report Parameters
	12.12.3 Define the Adhoc Reports to be listed in Screen
	12.12.4 Adding Screen Tab for Report Module

	12.13 Adhoc Report Generation - Screen 7775
	12.14 Adhoc Report Viewing - Screen 7779

	13 Security Customizations
	13.1 OPSS Access Policies - Adding Attributes
	13.1.1 Steps

	13.2 OAAM Fraud Assertions - Adding Attributes
	13.2.1 Steps

	13.3 Matrix Based Approvals - Adding Attributes
	13.4 Security Validators
	13.4.1 Customer Validators
	13.4.2 Account Validators
	13.4.3 Business Unit Validators

	13.5 Customizing User Search
	13.5.1 Steps

	13.6 Customizing One-Time-Password (OTP) Processing Logic
	13.6.1 Steps

	13.7 Customizing Role Evaluation
	13.7.1 Steps

	13.8 Customizing Limits Exclusions
	13.8.1 Steps

	13.9 Customizing Business Rules
	13.9.1 Steps to Update the Business Rules by Browser
	13.9.2 Steps to Update the Business Rules in JDeveloper

	14 Loan Schedule Computation Algorithm
	14.1 Adding a New Algorithm
	14.2 Consuming Third Party Schedules

	15 Receipt Printing
	15.1 Prerequisite
	15.1.1 Identify Node Element for Attributes in Print Receipt Template
	15.1.2 Receipt Format Template (.rtf)

	15.2 Configuration
	15.2.1 Parameter Configuration in the BROPConfig.properties
	15.2.2 Configuration in the ReceiptPrintReports.properties

	15.3 Implementation
	15.3.1 Default Nodes

	15.4 Special Scenarios

	16 Facts and Rules Configuration
	16.1 Facts
	16.1.1 Type of Facts
	16.1.2 Facts Vocabulary
	16.1.3 Generation of Facts using Eclipse Plug-in

	16.2 Business Rules
	16.2.1 Rules Engine
	16.2.2 Rules Creation by Guided Rule Editor
	16.2.3 Rules Creation By Decision Table
	16.2.4 Rules Storage
	16.2.5 Rules Deployment
	16.2.6 Rules Versioning

	16.3 Rules Configuration in Modules
	16.3.1 Generic Rules Configuration

	16.4 Rules Migration
	16.4.1 Rules Configured for Modules

	17 Composite Application Service
	17.1 Composite Application Service Architecture
	17.2 Multiple APIs in Single Module

	18 ID Generation
	18.1 Database Setup
	18.1.1 Database Configuration

	18.2 Automated ID Generation
	18.3 Custom ID Generation

	19 Extensibility of Domain Objects - Dictionary Pattern
	19.1 Customized Domain Object Attribute Placeholders
	19.2 Customized Domain Object DTO Interceptor in UI Layer
	19.2.1 Interceptor Hook to Persist Customized Domain Object Attributes
	19.2.2 Interceptor Hook to Fetch Customized Domain Object Attributes

	19.3 Dictionary Data Transfer from UI to Host
	19.3.1 Customized Domain Object DTO Transfer from UI to Host
	19.3.2 Customized Domain Object DTO transfer from Host to UI

	19.4 Translating Dictionary Data into Custom Domain Object
	19.4.1 Instantiation and Persistence of Custom Domain Objects
	19.4.2 Fetching of Customized Domain Objects

	19.5 Customized Domain Object ORM Configuration
	19.5.1 Case 1 - Non-Inheritance based mapping
	19.5.2 Case 2 - Mapped as a Hibernate Subclass
	19.5.3 Case 3 - Mapped as a Hibernate Union-Subclass or Joined-Subclass
	19.5.4 Case 4 - Mapped as a Hibernate Component

	19.6 Extensibility using Dictionary in Origination Application
	19.6.1 ICustomDataHandler's as DictionaryArray Interceptor
	19.6.2 Create Customized Abstract Domain Object Class
	19.6.3 Create Customized Abstract Domain Object Hibernate Mapping File
	19.6.4 Create Customized Abstract Domain Object Attribute Columns

	19.7 Extensibility using Attributes of Various Supported Datatypes

	20 Deployment Guideline
	20.1 Customized Project Jars
	20.2 Database Objects
	20.3 Extensibility Deployment

	21 Extensibility Usage - OBP Localization Pack
	21.1 Localization Implementation Architectural Change
	21.2 Customizing UI Layer
	21.2.1 JDeveloper and Project Customization
	21.2.2 Generic Project Creation
	21.2.3 MAR Creation

	21.3 Source Maintenance and Build
	21.3.1 Source Check-ins to SVN
	21.3.2 .mar files Generated during Build
	21.3.3 adf-config.xml

	21.4 Packaging and Deployment of Localization Pack

	22 OCH Integration
	22.1 Integration Adapter Interface
	22.2 Abstract Integration Adapter Class
	22.3 Sample Integration Adapter
	22.4 Integration Abstract Assembler
	22.5 Sample Assembler

	A Appendix

